刷题首页
题库
高中数学
题干
(2015秋•内江期末)如图所示,在四棱锥P﹣ABCD中,PA⊥底面ABCD,且底面ABCD为正方形,E是PA的中点.
(Ⅰ)求证:PC∥平面BDE;
(Ⅱ)求证:平面PAC⊥平面BDE.
上一题
下一题
0.99难度 解答题 更新时间:2016-03-08 05:07:04
答案(点此获取答案解析)
同类题1
给出四个命题:
①平行于同一平面的两个不重合的平面平行;
②平行于同一直线的两个不重合的平面平行;
③垂直于同一平面的两个不重合的平面平行;
④垂直于同一直线的两个不重合的平面平行;
其中真命题的序号是________.
同类题2
如图所示,AD⊥平面ABC,CE⊥平面ABC,AC=AD=AB=1,
,凸多面体ABCED的体积为
,F为BC的中点.
(1)求证:AF∥平面BDE;
(2)求证:平面BDE⊥平面BCE.
同类题3
如图,已知四棱锥P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=PB=PC=2CD=2,侧面PBC⊥底面ABCD,点M在AB上,且
,E为PB的中点.
(1)求证:CE∥平面ADP;
(2)求证:平面PAD⊥平面PAB;
(3)棱AP上是否存在一点N,使得平面DMN⊥平面ABCD,若存在,求出
的值;若不存在,请说明理由.
同类题4
如图,在空间四边形
中,
分别是
的中点,
分别在
上,且
.
(1)求证:
四点共面;
(2)设
与
交于点
,求证:
三点共线.
同类题5
如图,在平面四边形
中,
,
分别是边
上的点,且
.将
沿对角线
折起,使平面
平面
,并连结
.(如图2)
(Ⅰ)证明:
平面
;
(Ⅱ)证明:
;(Ⅲ)求直线
与平面
所成角的正弦值.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
空间点、直线、平面之间的位置关系
平行公理
证明异面直线垂直