刷题首页
题库
高中数学
题干
如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,∠BCD=135°,侧面PAB⊥底面ABCD,∠BAP=90°,AB=AC=PA=2,E,F分别为BC,AD的中点,点M在线段PD上.
(Ⅰ)求证:EF⊥平面PAC;
(Ⅱ)若M为PD的中点,求证:ME∥平面PAB;
(Ⅲ)如果直线ME与平面PBC所成的角和直线ME与平面ABCD所成的角相等,求
的值.
上一题
下一题
0.99难度 解答题 更新时间:2017-08-03 04:26:26
答案(点此获取答案解析)
同类题1
两个向量平行与平面中两条直线平行的区别在于
______
.
同类题2
如图所示,平面
平面
,且四边形
为矩形,四边形
为直角梯形,
,
,
,
.
(1)求证
平面
;
(2)求平面
与平面
所成锐二面角的余弦值;
(3)求直线
与平面
所成角的余弦值.
同类题3
如图,点E为正方形ABCD边CD上异于点C,D的动点,将△ADE沿AE翻折成△SAE,使得平面SAE⊥平面ABCE,则下列三个说法中正确的个数是( )
①存在点E使得直线SA⊥平面SBC
②平面SBC内存在直线与SA平行
③平面ABCE内存在直线与平面SAE平行
A.0
B.1
C.2
D.3
同类题4
若直线
与
平行,则它们之间的距离为
.
同类题5
给出下列结论:
①一条直线垂直于一个平面,则这条直线就和这个平面内的任何直线垂直;
②过平面外一点有只有一个平面和这个平面垂直;
③过直线外一点有且只有一个平面和这条直线平行;
④如果两个平面平行,那么其中一个平面内的任一直线平行于另一个平面.
其中正确的是__________.(写出所有正确结论的序号)
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
空间点、直线、平面之间的位置关系
平行公理
证明异面直线垂直