刷题首页
题库
高中数学
题干
(本小题满分14分)
如图1,在三棱锥P-ABC中,PA⊥平面ABC,AC⊥BC,D为侧棱PC上一点,它的正(主)视图和侧(左)视图如图2所示.
(1) 证明:AD⊥平面PBC;
(2) 在∠ACB的平分线上确定一点Q,使得PQ∥平面ABD,并求此时PQ的长.
上一题
下一题
0.99难度 解答题 更新时间:2014-01-10 09:46:45
答案(点此获取答案解析)
同类题1
如图,四棱锥
的底面
是平行四边形,
,
,
分别是棱
的中点.
(1)证明
平面
;
(2)若二面角P-AD-B为
,
①证明:平面PBC⊥平面ABCD
②求直线EF与平面PBC所成角的正弦值.
同类题2
已知
表示三条不同直线,下列四种说法:
①a与b异面,b与c异面,则a与c异面;
②a与b相交,b与c相交,则a与c相交;
③a与b平行,b与c平行,则a与c平行;
④a与b垂直,b与c垂直,则a与c垂直.
其中正确说法的个数为( )
A.4
B.3
C.2
D.1
同类题3
已知直线
、
与平面
、
、
满足
,
,
,
,则下列命题一定正确的是( )
A.
且
B.
且
C.
且
D.
且
同类题4
已知某几何体如图所示,若四边形
为矩形,四边形
为菱形,且
,平面
平面
,
的
中点,
.
(1)求证:
平面
;
(2)在线段
上是否存在点
,使二面角
的大小为
?若存在,求出线段
的长;若不存在,请说明理由.
同类题5
若
AB
∥
A
′
B
′,
AC
∥
A
′
C
′,有下列结论:
①∠
BAC
=∠
B
′
A
′
C
′;
②∠
ABC
+∠
A
′
B
′
C
′=180°;
③∠
ACB
=∠
A
′
C
′
B
′或∠
ACB
+∠
A
′
C
′
B
′=180°.
则一定成立的是________(填序号).
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
空间点、直线、平面之间的位置关系
平行公理
证明异面直线垂直