刷题首页
题库
高中数学
题干
如图,在直角梯形
中,
,
,
,
,
,点
在
上,且
,将
沿
折起,使得平面
平面
(如图),
为
中点.
(1)求证:
平面
;
(2)在线段
上是否存在点
,使得
平面
?若存在,求
的值,并加以证明;若不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2019-12-31 04:42:32
答案(点此获取答案解析)
同类题1
如图,在四棱锥
中,
平面
,在直角梯形
中,
,
,
,
为线段
的中点
(1)求证:平面
平面
(2)在线段
上是否存在点
,使得
平面
?若存在,求出点
的位置;若不存在,请说明理由
(3)若
是
中点,
,
,
,求三棱锥
的体积.
同类题2
如图,四棱柱
ABCD
-
中,地面
ABCD
为直角梯形,
AB
∥
CD
,
AB
⊥
BC
,平面
ABCD
⊥平面
AB
,∠
BA
=60°,
AB
=
A
=2
BC
=2
CD
=2
(1)求证:
BC
⊥
A
;
(2)求二面角
D
-
A
-
B
的余弦值;
(3)在线段
D
上是否存在点
M
,使得
CM
∥平面
DA
?若存在,求
的值;若不存在,请说明理由.
同类题3
如图,在多面体
中,四边形
为矩形,
,
均为等边三角形,
,
.
(1)过
作截面与线段
交于点
,使得
平面
,试确定点
的位置,并予以证明;
(2)在(1)的条件下,求直线
与平面
所成角的正弦值.
同类题4
如图①,△
ABC
是以
AC
为斜边的等腰直角三角形,△
BCD
是等边三角形.如图②,将△
BCD
沿
BC
折起,使平面
BCD
⊥平面
ABC
,记
BC
的中点为
E
,
BD
的中点为
M
,点
F
、
N
在棱
AC
上,且
AF
=3
CF
,
C
.
(1)试过直线
MN
作一平面,使它与平面
DEF
平行,并加以证明;
(2)记(1)中所作的平面为α,求平面α与平面
BMN
所成锐二面角的余弦值.
同类题5
如图,在四棱锥P-ABCD中,AD∥BC,
ADC=
PAB=90°,BC=CD=
AD.E为棱AD的中点,异面直线PA与CD所成的角为90°.
(I)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由;
(II)若二面角P-CD-A的大小为45°,求直线PA与平面PCE所成角的正弦值.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面平行的判定与性质
线面平行的判定
补全线面平行的条件
面面垂直证线面垂直