刷题首页
题库
高中数学
题干
在如图所示的多面体中,四边形
和
都为矩形.
(Ⅰ)若
,证明:直线
平面
;
(Ⅱ)设
,
分别是线段
,
的中点,在线段
上是否存在一点
,使直线
平面
?请证明你的结论.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-28 12:11:25
答案(点此获取答案解析)
同类题1
如图,在正方体
中,
是
的中点.
(1)求证:
平面
;
(2)求证:平面
平面
.(只需在下面横线上填写给出的如下结论的
序号
:①
平面
,②
平面
,③
,④
,⑤
)
证明:(1)设
,连接
.因为底面
是正方形,所以
为
的中点,又
是
的中点,所以_________.因为
平面
,____________,所以
平面
.
(2)因为
平面
平面
,所以___________,因为底面
是正方形,所以_______,又因为
平面
平面
,所以_________.又
平面
,所以平面
平面
.
同类题2
在等腰
Rt
△
ABC
中,∠
BAC
=90°,腰长为2,
D
、
E
分别是边
AB
、
BC
的中点,将△
BDE
沿
DE
翻折,得到四棱锥
B
﹣
ADEC
,且
F
为棱
BC
中点,
BA
.
(1)求证:
EF
⊥平面
BAC
;
(2)在线段
AD
上是否存在一点
Q
,使得
AF
∥平面
BEQ
?若存在,求二面角
Q
﹣
BE
﹣
A
的余弦值,若不存在,请说明理由.
同类题3
如图下图①,等边三角形ABC的边长为2a,CD是AB边上的高,E,F分别是AC和BC边上的点,且满足
=k,现将△ABC沿CD翻折成直二面角ADCB,如图下图②.
(1)试判断翻折后直线AB与平面DEF的位置关系,并说明理由;
(2)求二面角BACD的正切值.
①
②
同类题4
如图,在正方体
ABCD
﹣
A
1
B
1
C
1
D
1
中,
E
,
F
,
G
分别是
AB
,
CC
1
,
AD
的中点
.
(1)求异面直线
EG
与
B
1
C
所成角的大小;
(2)棱
CD
上是否存在点
T
,使
AT
∥平面
B
1
EF
?若存在,求出
的值;若不存在,请说明理由
.
同类题5
如图,已知平面
平面
,
为线段
的中点,
,四边形
为边长为1的正方形,平面
平面
,
,
,
为棱
的中点.
(1)若
为线
上的点,且直线
平面
,试确定点
的位置;
(2)求平面
与平面
所成的锐二面角的余弦值.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面平行的判定与性质
线面平行的判定
补全线面平行的条件
证明线面垂直