刷题首页
题库
高中数学
题干
如图,在多面体
ABD
﹣
A
1
B
1
C
1
D
1
中四边形
A
1
B
1
C
1
D
1
,
ADD
1
A
1
.
ABB
1
A
1
均为正方形.点
M
是
BD
的中点.点
H
在线段
C
1
M
上,且
A
1
H
与平面
ABD
所成角的正弦值为
.
(Ⅰ)证明:
B
1
D
1
∥平面
BC
1
D
:
(Ⅱ)求二面角
A
﹣
A
1
H
﹣
B
的的正弦值.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-15 10:10:49
答案(点此获取答案解析)
同类题1
已知P是四边形ABCD所在平面外一点,E,F,G分别是PB,AB,BC的中点.
求证:平面PAC∥平面EFG.
同类题2
如图,在四棱锥
中,
,
,
,点
分别是
的中点
(1)求证:
平面
;
(2)求证:平面
平面
同类题3
如图所示,四棱锥
P
-
ABCD
中,
AB
⊥
AD
,
AD
⊥
DC
,
PA
⊥底面
ABCD
,
,
M
为
PC
的中点,
N
点在
AB
上且
.
(1)证明:
MN
∥平面
PAD
;
(2)求直线
MN
与平面
PCB
所成的角.
同类题4
如图,四边形
ABCD
与
BDEF
均为菱形,设
AC
与
BD
相交于点
O
,若∠
DAB
=∠
DBF
=60°,且
FA
=
FC
.
(1)求证:
FC
∥平面
EAD
;
(2)求二面角
A
-
FC
-
B
的余弦值.
同类题5
如图,四边形
为正方形,
为矩形,
平面
,
为
的中点.
(Ⅰ)求证
平面
;
(Ⅱ)求证平面
平面
;
(Ⅲ)求二面角
的余弦植.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面平行的判定与性质
线面平行的判定
证明线面平行