刷题首页
题库
高中数学
题干
“辛卜生公式”给出了求几何体体积的一种计算方法:夹在两个平行平面之间的几何体,如果被平行于这两个平面的任何平面所截,截得的截面面积是截面高(不超过三次)的多项式函数,那么这个几何体的体积,就等于其上底面积、下底面积与四倍中截面面积的和乘以高的六分之一.即:
,式中
,
,
,
依次为几何体的高,下底面积,上底面积,中截面面积.如图,现将曲线
与直线
及
轴围成的封闭图形绕
轴旋转一周得到一个几何体.利用辛卜生公式可求得该几何体的体积
( )
A.
B.
C.
D.
上一题
下一题
0.99难度 单选题 更新时间:2020-01-19 11:08:49
答案(点此获取答案解析)
同类题1
由曲线
,
,
同成的封闭图形绕y轴旋转一周所得的旋转体的体积为V,则V=__________.
同类题2
《九章算术》是我国古代数学经典名著,其中有这样一个问题:“今有圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”其意为:今有-圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该木材,锯口深一寸,锯道长-尺.问这块圆柱形木材的直径是多少?现有长为1丈的圆柱形木材部分镶嵌在墙体中,截面图如图所示(阴影部分为镶嵌在墙体内的部分).已知弦
尺,弓形高
寸,估算该木材镶嵌在墙体中的体积约为__________立方寸.(结果保留整数)
注:l丈=10尺=100寸,
,
.
同类题3
如图,已知四面体
中,
,且
两两互相垂直,点
是
的中心.
(1)求二面角
的大小(用反三角函数表示);
(2)过
作
,垂足为
,求
绕直线
旋转一周所形成的几何体的体积;
(3)将
绕直线
旋转一周,则在旋转过程中,直线
与直线
所成角记为
,求
的取值范围.
同类题4
已知直线
:
与
轴和
轴分别交于
两点,直线
经过点
且与直线
垂直,垂足为
.
(Ⅰ)求直线
的方程与点
的坐标;
(Ⅱ)若将四边形
(
为坐标原点)绕
轴旋转一周得到一几何体,求该几何体的体积
.
同类题5
已知直角三角形△
中,
,
,
,则△
绕直线
旋转一周所得几何体的体积为_____
相关知识点
空间向量与立体几何
空间几何体
空间几何体的表面积与体积
组合体的表面积和体积
求旋转体的体积