刷题首页
题库
高中数学
题干
如图,在直四棱柱
中,底面
为菱形,
且侧棱
其中
为
的
交点.
(1)求点
到平面
的距离;
(2)在线段
上,是否存在一个点
,使得直线
与
垂直?若存在,求出线段
的长;若不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-13 08:11:59
答案(点此获取答案解析)
同类题1
如图:在正方体
中,
是
的中点,
是线段
上一点,且
.
(1) 求证:
;
(2) 若平面
平面
,求
的值.
同类题2
已知三棱锥P-ABC中,PA⊥ABC,AB⊥AC,PA=AC=½AB,N为AB上一点,AB=4AN,M,S分别为PB,BC的中点.
(Ⅰ)证明:CM⊥SN;
(Ⅱ)求SN与平面CMN所成角的大小.
同类题3
已知平面
是不重合的两个面,下列命题中,所有正确命题的序号是
_____
.
①若
,
分别是平面
的法向量,则
;
②若
,
分别是平面
,
的法向量,则
;
③若
是平面
的法向量,
与
共面,则
;
④若两个平面的法向量不垂直,则这两个平面一定不垂直.
同类题4
如图,四棱锥
的底面是直角梯形,
,
,
是
的中点,
.
(Ⅰ)证明:
⊥平面
;
(Ⅱ)求二面角
的大小;
(Ⅲ)线段
上是否存在一点
,使得直线
平面
. 若存在,确定
点的位置;若不存在,说明理由.
同类题5
如图,在棱长为
的正方体
中,点
是棱
的中点,点
在棱
上,且满足
.
(1)求证:
;
(2)在棱
上确定一点
,使
、
、
、
四点共面,并求此时
的长.
相关知识点
空间向量与立体几何
空间向量与立体几何
空间向量的应用
空间位置关系的向量证明
点到平面距离的向量求法