刷题首页
题库
高中数学
题干
.如果{a
n
}为递增数列,则{a
n
}的通项公式可以为( ).
A.a
n
=-2n+3
B.a
n
=-n
2
-3n+1
C.a
n
=
a
n
=1+log
2
n
上一题
下一题
0.99难度 单选题 更新时间:2014-09-20 04:03:20
答案(点此获取答案解析)
同类题1
无穷数列
满足:
为正整数,且对任意正整数
,
为前
项
、
、
、
中等于
的项的个数.
(1)若
,求
和
的值;
(2)已知命题
存在正整数
,使得
,判断命题
的真假并说明理由;
(3)若对任意正整数
,都有
恒成立,求
的值.
同类题2
设数列
满足
,
,
,
.s
(1)证明:数列
是等差数列,并求数列
的通项;
(2)求数列
的通项,并求数列
的前
项和
;
(3)若
,且
是单调递增数列,求实数
的取值范围.
同类题3
对于项数为
(
)的有穷正整数数列
,记
(
),即
为
中的最大值,称数列
为数列
的“创新数列”.比如
的“创新数列”为
.
(1)若数列
的“创新数列”
为1,2,3,4,4,写出所有可能的数列
;
(2)设数列
为数列
的“创新数列”,满足
(
),求证:
(
);
(3)设数列
为数列
的“创新数列”,数列
中的项互不相等且所有项的和等于所有项的积,求出所有的数列
.
同类题4
设等差数列
的前n项和为
,且满足
,
,则
中最大项为()
A.
B.
C.
D.
同类题5
已知非零数列
满足
,
.
(1)求证:数列
是等比数列;
(2)若关于
的不等式
有解,求整数
的最小值;
(3)在数列
中,是否存在首项、第
项、第
项(
),使得这三项依次构成等差数列?若存在,求出所有的
;若不存在,请说明理由.
相关知识点
数列
数列的概念与简单表示法
递增数列与递减数列
判断数列的增减性