刷题首页
题库
高中数学
题干
三棱锥O-ABC中,OA、OB、OC两两垂直,OC=2x,OA=x,OB=y,且x+y=3,则三棱锥O-ABC体积的最大值为()
A.4
B.8
C.
D.
上一题
下一题
0.99难度 单选题 更新时间:2016-12-06 03:15:14
答案(点此获取答案解析)
同类题1
如图,圆柱体木材的横截面
半径
为
,从该木材中截取一段圆柱体,再加工制作成直四棱柱
,该四棱柱的上、下底面均为等腰梯形,分别内接于圆柱的上、下底面,下底面圆的圆心
在梯形
内部,
,
,
,设
.
(1)求梯形
的面积;
(2)当
取何值时,直四棱柱
的体积最大?并求出最大值(注:木材的长度足够长)
同类题2
将长为
的铁丝截成12段,搭成一个正四棱柱的骨架,以此骨架做成一个正四棱柱容器,则此容器的最大容积为( )
A.
B.
C.
D.
同类题3
底面为正多边形,顶点在底面的射影为底面多边形中心的棱锥为正棱锥,则半径为2的球的内接正四棱锥的体积最大值为__________.
同类题4
为了丰富学生活动,在体育课上,体育教师设计了一个游戏,让甲、乙、丙三人各抓住橡皮带的一端,甲站在直角
斜边
的中点
处,乙站在
处,丙站在
处.游戏开始,甲不动,乙、丙分别以
和
的速度同时出发,匀速跑向终点
和
,运动过程中绷紧的橡皮带围成一个如图所示的
.(规定:只要有一人跑到终点,游戏就结束,且
).已知
长为
,
长为
,记经过
后
的面积为
.
(1)求
关于
的函数表示,并求出
的取值范围;
(2)当游戏进行到
时,体育教师宣布停止,求此时
的最小值.
同类题5
如果一个圆柱的轴截面的周长为定值l,则其体积的最大值为( )
A.
B.
C.
D.
相关知识点
函数与导数
导数及其应用
导数的综合应用
利用导数解决实际应用问题
面积、体积最大问题