刷题首页
题库
高中数学
题干
在一个半径为1的半球材料中截取两个高度均为
的圆柱,其轴截面如图所示.设两个圆柱体积之和为
.
(1)求
的表达式,并写出
的取值范围;
(2)求两个圆柱体积之和
的最大值.
上一题
下一题
0.99难度 解答题 更新时间:2018-02-11 06:33:23
答案(点此获取答案解析)
同类题1
将一个半径为3dm,圆心角为
的扇形铁皮焊接成一个容积为V(dm
3
)的圆锥形无盖容器(忽略损耗).
(1)求V关于
的函数关系式
(2)当
为何值时,V取得最大值
(3)容积最大的圆锥形容器能否完全盖住桌面上一个半径为0.5dm的球?请说明理由.
同类题2
已知六棱锥
,底面
为正六边形,点
在底面的射影为其中心.将该六棱锥沿六条侧棱剪开,使六个侧面和底面展开在同一平面上,若展开后点
在该平面上对应的六个点全部落在一个半径为5的圆上,则当正六边形
的边长变化时,所得六棱锥体积的最大值为__________.
同类题3
一个底面半径为1,高为2的圆锥形工件切割成一个圆柱体,能切割出的圆柱的最大体积为()
A.
B.
C.
D.
同类题4
在三棱锥
中,
平面
,且
,
,
,当三棱锥
的体积最大时,此三棱锥的外接球的表面积为
__________
.
同类题5
(本小题满分14分)某商场为促销要准备一些正三棱锥形状的装饰品,用半径为
的圆形包装纸包装.要求如下:正三棱锥的底面中心与包装纸的圆心重合,包装纸不能裁剪,沿底边向上翻折,其边缘恰好达到三棱锥的顶点,如图所示.设正三棱锥的底面边长为
,体积为
.
(1)求
关于
的函数关系式;
(2)在所有能用这种包装纸包装的正三棱锥装饰品中,
的最大值是多少?并求此时
的值.
相关知识点
函数与导数
导数及其应用
导数的综合应用
利用导数解决实际应用问题
面积、体积最大问题