刷题首页
题库
高中数学
题干
在一个半径为1的半球材料中截取两个高度均为
的圆柱,其轴截面如图所示.设两个圆柱体积之和为
.
(1)求
的表达式,并写出
的取值范围;
(2)求两个圆柱体积之和
的最大值.
上一题
下一题
0.99难度 解答题 更新时间:2018-02-11 06:33:23
答案(点此获取答案解析)
同类题1
某地政府为科技兴市,欲在如图所示的矩形
的非农业用地中规划出一个高科技工业园区(如图中阴影部分),形状为直角梯形
(线段
和
为两个底边),已知
,其中
曲线段
是以
为顶点、
为对称轴的抛物线的一部分.分别以直线
为
轴和
轴建立平面直角坐标系.
(1)求曲线段
所在抛物线的方程;
(2)设点
的横坐标为
,高科技工业园区的面积为
.试求
关于
的函数表达式,并求出工业园区面积
的最大值.
同类题2
表面积为
的球内接一个正三棱柱,则此三棱柱体积的最大值为( )
A.
B.
C.
D.
同类题3
如图,有一块半圆形的空地,政府计划在空地上建一个矩形的市民活动广场ABCD及矩形的停车场EFGH,剩余的地方进行绿化,其中半圆的圆心为O,半径为r,矩形的一边AB在直径上,点C,D,G,H在圆周上,E,F在边CD上,且∠BOG=60°,设∠BOC=
.
(1)记市民活动广场及停车场的占地总面积为
,求
的表达式;
(2)当cos
为何值时,可使市民活动广场及停车场的占地总面积最大.
同类题4
如图,某小区中央广场由两部分组成,一部分是边长为
的正方形
,另一部分是以
为直径的半圆,其圆心为
.规划修建的
条直道
,
,
将广场分割为
个区域:Ⅰ、Ⅲ、Ⅴ为绿化区域(图中阴影部分),Ⅱ、Ⅳ、Ⅵ为休闲区域,其中点
在半圆弧上,
分别与
,
相交于点
,
.(道路宽度忽略不计)
(1)若
经过圆心,求点
到
的距离;
(2)设
,
.
①试用
表示
的长度;
②当
为何值时,绿化区域面积之和最大.
同类题5
如图,将边长为6的等边三角形各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正三棱柱形的容器.
(1)若这个容器的底面边长为
,容积为
,写出
关于
的函数关系式并注明定义域;
(2)求这个容器容积的最大值.
相关知识点
函数与导数
导数及其应用
导数的综合应用
利用导数解决实际应用问题
面积、体积最大问题