刷题首页
题库
高中数学
题干
已知函数
.
(1)当
时,若不等式
恒成立,求实数
的取值范围;
(2)若
,证明
.
上一题
下一题
0.99难度 解答题 更新时间:2019-05-05 11:42:14
答案(点此获取答案解析)
同类题1
已知函数
,若函数
有两个零点
,
.
(1)求实数
的取值范围;
(2)求证:当
时,
;
(3)求证:
.
同类题2
(本小题满分12分) 已知函数
在
上是增函数,在
上为减函数.
(Ⅰ)求
的表达式;
(Ⅱ)若当
时,不等式
恒成立,求实数
的值;
(Ⅲ)是否存在实数
使得关于
的方程
在区间[0,2]上恰好有两个相异的实根,若存在,求实数
的取值范围.
同类题3
已知函数
(
,
,
为自然对数的底数),若
对于
恒成立.
(1)求实数
的值;
(2)证明:
存在唯一极大值点
,且
.
同类题4
已知函数
.
(1)当
时,求函数
在
处的切线方程;
(2)当
时,求证:
.
同类题5
(江苏省南京师大附中2018届高三高考考前模拟考试数学试题)已知函数f(x)=lnx-ax+a,a∈R.
(1)若a=1,求函数f(x)的极值;
(2)若函数f(x)有两个零点,求a的范围;
(3)对于曲线y=f(x)上的两个不同的点P(x
1
,f(x
1
)),Q(x
2
,f(x
2
)),记直线PQ的斜率为k,若y=f(x)的导函数为f ′(x),证明:f ′(
)<k.
相关知识点
函数与导数
导数及其应用
导数的综合应用
导数在函数中的其他应用
利用导数证明不等式
利用导数研究不等式恒成立问题