刷题宝
  • 刷题首页
题库 高中数学

题干

判断函数在区间上的单调性,并求最大值和最小值.
上一题 下一题 0.99难度 解答题 更新时间:2011-11-11 03:09:04

答案(点此获取答案解析)

同类题1

已知函数的定义域(其中).
(1)证明为奇函数;
(2)证明为上的增函数.

同类题2

已知函数
(1)用定义证明在上单调递增;
(2)若是上的奇函数,求的值;
(3)若的值域为D,且,求的取值范围.

同类题3

已知函数是奇函数.
(1)求实数的值;
(2)用定义证明函数在上的单调性;
(3)若对于任意的不等式恒成立,求实数的取值范围.

同类题4

已知函数的定义域为,对于任意的都有,设时,.
(1)求;
(2)证明:对于任意的,;
(3)当时,若不等式在上恒定成立,求实数的取值范围.

同类题5

已知定义在上的奇函数满足,且在上是增函数;又定义行列式; 函数(其中)
(1)证明: 函数在上也是增函数;
(2)若函数的最大值为,求的值;
(3)若记集合恒有,恒有,求满足的的取值范围.
相关知识点
  • 函数与导数
  • 函数及其性质
  • 函数的基本性质
  • 函数的单调性
  • 定义法判断函数的单调性
  • 利用函数单调性求最值
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)