刷题首页
题库
高中数学
题干
定义在
上的奇函数
有最小正周期4,且
时,
(1)判断并证明
在
上的单调性,并求
在
上的解析式;
(2)当
为何值时,关于
的方程
在
上有实数解?
上一题
下一题
0.99难度 解答题 更新时间:2019-11-12 04:13:17
答案(点此获取答案解析)
同类题1
已知函数
是奇函数.
(1)求
的值并判断
的单调性;
(2)当
时,不等式
恒成立,求实数
的取值范围.
同类题2
下列函数中,与函数
的奇偶性相同,且在区间
上的单调性也相同的是( )
A.
B.
C.
D.
同类题3
已知函数
是定义域为
的偶函数,当
时,
.
(1)求
的值及
的解析式;
(2)用定义法判断
在区间
上的单调性.
同类题4
已知函数
.
(1)若
,试证明
在区间(
)上单调递增;
(2)若
,且
在区间
上单调递减,求
的取值范围.
同类题5
已知函数
是定义在
上的奇函数,且
.
(1)确定函数
的解析式;
(2)试判断函数
的单调性,并用定义法证明.
相关知识点
函数与导数
函数及其性质
函数的基本性质
函数的单调性
定义法判断函数的单调性
利用函数单调性求最值