刷题首页
题库
高中数学
题干
设
是实数,已知奇函数
,
(1)求
的值;
(2)证明函数
在R上是增函数;
(3)若对任意的t∈R,不等式f(t
2
﹣2t)+f(2t
2
﹣k)<0有解,求k的取值范围.
上一题
下一题
0.99难度 解答题 更新时间:2018-12-02 07:22:41
答案(点此获取答案解析)
同类题1
下列函数中,既是偶函数又在
上单调递增的函数是( )
A.
B.
C.
D.
同类题2
已知函数
.
(
)证明函数
在
上单调递增.
(
)是否存在实数
使函数
为奇函数?若存在,求实数
的值;若不存在请说明理由.
同类题3
如果函数
对定义域
内的任意两个不相等的实数
,都有
,则称函数
在定义域
内为“
”函数.给出函数:
①
;
②
;
③
;
④
.
以上函数为“
”函数的序号是
____________
.
同类题4
对于函数
,定义域为
,以下命题正确的是(只要求写出命题的序号)
①若
,则
是
上的偶函数;
②若对于
,都有
,则
是
上的奇函数;
③若函数
在
上具有单调性且
则
是
上的递减函数;
④若
,则
是
上的递增函数。
同类题5
已知函数
,判断f(x)在区间3,5上的单调性,并加以证明.
相关知识点
函数与导数
函数及其性质
函数的基本性质
函数的单调性
定义法判断函数的单调性
函数单调性的应用