刷题首页
题库
高中数学
题干
设
是实数,已知奇函数
,
(1)求
的值;
(2)证明函数
在R上是增函数;
(3)若对任意的t∈R,不等式f(t
2
﹣2t)+f(2t
2
﹣k)<0有解,求k的取值范围.
上一题
下一题
0.99难度 解答题 更新时间:2018-12-02 07:22:41
答案(点此获取答案解析)
同类题1
已知定义在实数集
上的奇函数
有最小正周期2,且当
时,
.
(Ⅰ)求函数
在
上的解析式;
(Ⅱ)判断
在
上的单调性;
(Ⅲ)当
取何值时,方程
在
上有实数解?
同类题2
有时可用函数
描述学习某学科知识的掌握程度,其中x表示某学科知识的学习次数(
),
表示对该学科知识的掌握程度,正实数a与学科知识有关.
(1)证明:当
时,掌握程度的增加量
总是下降;
(2)根据经验,学科甲、乙、丙对应的a的取值区间分别为
,
,
.当学习某学科知识6次时,掌握程度是85%,请确定相应的学科.
同类题3
已知定义域为
的函数
是奇函数.
(1)求
的值;
(2)利用定义判断函数
的单调性;
(3)若对任意
,不等式
恒成立,求实数
的取值范围.
同类题4
已知函数
.
(
)证明函数
在
上单调递增.
(
)是否存在实数
使函数
为奇函数?若存在,求实数
的值;若不存在请说明理由.
同类题5
(本题满分16分;第(1)小题5分,第(2)小题5分,第三小题6分)
已知函数
(1)判断并证明
在
上的单调性;
(2)若存在
,使
,则称
为函数
的不动点,现已知该函数有且仅有一个不动点,求
的值;
(3)若
在
上恒成立 , 求
的取值范围.
相关知识点
函数与导数
函数及其性质
函数的基本性质
函数的单调性
定义法判断函数的单调性
函数单调性的应用