刷题宝
  • 刷题首页
题库 高中数学

题干

已知函数.
(1)判断函数在上的单调性,并用单调性的定义加以证明;
(2)求函数在上的值域。
上一题 下一题 0.99难度 解答题 更新时间:2019-10-07 05:23:12

答案(点此获取答案解析)

同类题1

已知函数f(x)的定义域是R,且f(-5)=0,f(x)在(0,+∞)内的任意两个实数都有,f(x-1)的图像关于点(1,0)对称,则不等式的解集是(  )
A.{x|-5<x<0或x>5}B.{x|x<-5或0<x<5}
C.{x|x<-5或x>5}D.{x|-5<x<0或0<x<5}

同类题2

已知函数是定义域为上的奇函数,且
(1)求的解析式;  
(2)用定义证明:在上是增函数;
(3)若实数满足,求实数的范围.

同类题3

下列四个函数中,在区间上是减函数的是 (   )
A.B.C.D.

同类题4

已知奇函数的定义域为,其中为指数函数且的反函数过点.
(1)求函数的解析式;
(2)判断函数的单调性,并用函数单调性定义证明.

同类题5

已知.
(1)判断的奇偶性,并说明理由;
(2)当时,判断并证明函数在(0,2上的单调性,并求其值域.
相关知识点
  • 函数与导数
  • 函数及其性质
  • 函数的基本性质
  • 函数的单调性
  • 定义法判断函数的单调性
  • 利用函数单调性求最值
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)