刷题宝
  • 刷题首页
题库 高中数学

题干

函数满足如下四个条件:
①定义域为;
②;
③当时,;
④对任意满足.
根据上述条件,求解下列问题:
⑴求及的值.
⑵应用函数单调性的定义判断并证明的单调性.
⑶求不等式的解集.
上一题 下一题 0.99难度 解答题 更新时间:2019-10-31 01:19:41

答案(点此获取答案解析)

同类题1

已知函数是定义在上的奇函数;
(1)求实数的值.
(2)试判断函数的单调性的定义证明;
(3)若对任意的,不等式恒成立,求实数的取值范围.

同类题2

已知奇函数.
(1)求的值;
(2)判断的单调性,并加以证明;
(3)解不等式.

同类题3

已知
(1)求的最小值以及取得最小值时的值.
(2)若方程在上有两个根,求的取值范围.

同类题4

定义域为的函数满足:对于任意的实数都有 成立,且当时,.
(Ⅰ)判断函数的奇偶性,并证明你的结论;
(Ⅱ)证明在上为减函数;
(Ⅲ)若,求实数的取值范围.

同类题5

已知函数f(x)定义域为R,f(1)=2,f(x)≠0,对任意x,y∈R都有f(x+y)=f(x)•f(y),当x>0时,f(x)>1;
(1)判断f(x)在R上的单调性,并证明;
(2)解不等式f(x)f(x-2)>16.
相关知识点
  • 函数与导数
  • 函数及其性质
  • 函数的基本性质
  • 函数的单调性
  • 定义法判断函数的单调性
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)