刷题宝
  • 刷题首页
题库 高中数学

题干

已知函数,且.
(1)求实数的值;
(2)判断函数在区间上的单调性,并用函数单调性的定义证明;
(3)求实数的取值范围,使得关于的方程分别为:
①有且仅有一个实数解;②有两个不同的实数解;③有三个不同的实数解.
上一题 下一题 0.99难度 解答题 更新时间:2019-11-20 02:33:19

答案(点此获取答案解析)

同类题1

设函数是定义在上的函数,并且满足下面三个条件:①对任意正数,都有;②当时, ;③.
(1)求, 的值;
(2)证明在上是减函数;
(3)如果不等式成立,求的取值范围.

同类题2

已知函数f(x)是定义域为R的奇函数,其中m是常数.
(Ⅰ)判断f(x)的单调性,并用定义证明;
(Ⅱ)若对任意x∈﹣3,1,有f(tx)+f(2t﹣1)≤0恒成立,求实数t的取值范围.

同类题3

已知定义在区间上的函数为奇函数.
(1)求函数的解析式并判断函数在区间上的单调性;
(2)解关于的不等式.

同类题4

定义在上的偶函数满足对任意,有,则当时,有(   )
A.B.
C.D.

同类题5

已知函数f(x)=ax+ (a>1),
(1)判断函数f(x)在(-1,+∞)上的单调性,并证明你的判断;
(2)若a=3,求方程f(x)=0的正根(精确到0.1).
相关知识点
  • 函数与导数
  • 函数及其性质
  • 函数的基本性质
  • 函数的单调性
  • 定义法判断函数的单调性
  • 根据函数零点的个数求参数范围
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)