刷题宝
  • 刷题首页
题库 高中数学

题干

已知函数f(x)是定义域为R的奇函数,其中m是常数.
(Ⅰ)判断f(x)的单调性,并用定义证明;
(Ⅱ)若对任意x∈[﹣3,1],有f(tx)+f(2t﹣1)≤0恒成立,求实数t的取值范围.
上一题 下一题 0.99难度 解答题 更新时间:2020-01-30 12:11:45

答案(点此获取答案解析)

同类题1

已知函数.
(1)判断的奇偶性;
(2)写出的单调递增区间,并用定义证明.

同类题2

对于函数①,②,③,
判断如下两个命题的真假:
命题甲:在区间上是增函数;
命题乙:在区间上恰有两个零点,且.
能使命题甲、乙均为真的函数的序号是
A.①B.②C.①③D.①②

同类题3

定义在R上的函数,当时,,且对任意的都有.
(Ⅰ)求证:是R上的增函数;
(Ⅱ)求不等式的解集.

同类题4

已知:函数,
(1)求函数f(x)的定义域;判断函数f(x)的奇偶性并说明理由;
(2)判断函数f(x)在(0,+∞)上的单调性,并用定义加以证明.

同类题5

已知函数f(x)=是定义在R上的奇函数;
(1)求a、b的值,判断并证明函数y=f(x)在区间(1,+∞)上的单调性
(2)已知k<0且不等式f(t2-2t+3)+f(k-1)<0对任意的t∈R恒成立,求实数k的取值范围.
相关知识点
  • 函数与导数
  • 函数及其性质
  • 函数的基本性质
  • 函数的单调性
  • 定义法判断函数的单调性
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)