刷题宝
  • 刷题首页
题库 高中数学

题干

设函数f(x)的定义域是R,对于任意的x,y,有f(x+y)=f(x)+f(y),且当x>0时,f(x)>0.
(1)求f(0)的值;
(2)判断函数的奇偶性;
(3)用函数单调性的定义证明函数f(x)为增函数.
上一题 下一题 0.99难度 解答题 更新时间:2019-12-04 10:48:06

答案(点此获取答案解析)

同类题1

定义在上的偶函数满足对任意,有,则当时,有(   )
A.B.
C.D.

同类题2

如果函数在上是增函数,那么对于任意的,下列结论中不正确的是(   )
A.B.
C.若,则D.
E.

同类题3

已知函数的定义域是,对任意实数,,均有,且当时,.
(1)证明在上是增函数;
(2)若,求不等式的解集.

同类题4

已知函数,为实数.
(1)当时,判断并证明函数在区间上的单调性;
(2)是否存在实数,使得在闭区间上的最大值为,若存在,求出的值;若不存在,请说明理由.

同类题5

已知函数f(x)对任意x,y∈R,都有f(x+y)=f(x)+f(y),且x>0时,f(x)<0, f(1)=-2.
(1)求证:f(x)是奇函数;
(2)判断函数的单调性
(3)求f(x)在-3,3上的最大值和最小值.
相关知识点
  • 函数与导数
  • 函数及其性质
  • 函数的基本性质
  • 函数的单调性
  • 定义法判断函数的单调性
  • 抽象函数的奇偶性
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)