刷题首页
题库
高中数学
题干
设
S
、
T
是
R
的两个非空子集,如果函数
满足:①
;②对任意
,
,当
时,恒有
,那么称函数
为集合
S
到集合
T
的“保序同构函数”.
(1)试写出集合
到集合
R
的一个“保序同构函数”;
(2)求证:不存在从集合
Z
到集合
Q
的“保序同构函数”;
(3)已知
是集合
到集合
的“保序同构函数”,求
s
和
t
的最大值.
上一题
下一题
0.99难度 解答题 更新时间:2019-12-19 05:32:03
答案(点此获取答案解析)
同类题1
已知奇函数
与偶函数
均为定义在
上的函数,并满足
(1)求
的解析式;
(2)设函数
①判断
的单调性,并用定义证明;
②若
,求实数
的取值范围
同类题2
已知对任意
x
.
y
∈R,都有
f
(
x
+
y
)=
f
(
x
)+
f
(
y
)﹣
t
(
t
为常数)并且当
x
>0时,
f
(
x
)<
t
(1)求证:
f
(
x
)是
R
上的减函数;
(2)若
f
(4)=﹣
t
﹣4,解关于
m
的不等式
f
(
m
2
﹣
m
)+2>0.
同类题3
定义在
上的函数
对任意两个不相等实数
,
,总有
成立,则必有( )
A.
在
上是增函数
B.
在
上是减函数
C.函数
是先增加后减少
D.函数
是先减少后增加
同类题4
下列函数中,既是偶函数又在区间(-∞,0)上是单调递增的是( )
A.
B.
C.
D.
同类题5
设函数
.
(1)当
时,对于一切
,函数
在区间
内总存在唯一零点,求
的取值范围;
(2)若
区间
上是单调函数,求
的取值范围;
(3)当
,
时,函数
在区间
内的零点为
,判断数列
,
,…,
,…的增减性,并说明理由.
相关知识点
函数与导数
函数及其性质
函数的基本性质
函数的单调性
定义法判断函数的单调性
反证法证明