刷题宝
  • 刷题首页
题库 高中数学

题干

设函数f(x)的定义域是(0,+∞),且对任意正实数x,y都有f(xy)=f(x)+f(y)恒成立,已知f(2)=1,且x>1时,f(x)>0.
(1)求f()的值;
(2)判断y=f(x)在(0,+∞)上的单调性并给出证明;
(3)解不等式f(2x)>f(8x-6)-1.
上一题 下一题 0.99难度 解答题 更新时间:2019-12-26 07:48:18

答案(点此获取答案解析)

同类题1

已知A,B,C是函数图象上的三点,它们的横坐标依次为t,t+2,t+4,其中e=2.71828…为自然对数的底数
(1)求△ABC面积S关于的函数关系式S=g(t);
(2)用单调性的定义证明函数在[0,+∞)上是增函数

同类题2

已知函数的定义域为,对于任意的、,都有,设时,且.
(1)求;
(2)证明:对于任意的,;
(3)若不等式在上恒成立,求实数的取值范围.

同类题3

已知函数.
(1)用定义证明:在上是增函数;
(2)求在上的值域.

同类题4

下列函数中,与函数的奇偶性相同,且在上单调性也相同的是(  )
A.B.C.D.

同类题5

已知
(1)证明函数f ( x )的图象关于轴对称;
(2)判断在上的单调性,并用定义加以证明;
(3)当x∈[1,2]时函数f (x )的最大值为,求此时a的值。
相关知识点
  • 函数与导数
  • 函数及其性质
  • 函数的基本性质
  • 函数的单调性
  • 定义法判断函数的单调性
  • 函数单调性的应用
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)