刷题首页
题库
高中数学
题干
已知
是定义在
上的奇函数.
求
的解析式;
判断并证明
的单调性;
解不等式:
上一题
下一题
0.99难度 解答题 更新时间:2020-01-01 11:09:28
答案(点此获取答案解析)
同类题1
已知函数
是奇函数,并且函数
的图像经过点
.
(1)求实数
的值;
(2)证明:函数
在
上单调递减
同类题2
已知函数
是定义在
上的奇函数,且对任意实数
,都有
,则满足不等式
的
的取值范围为______.
同类题3
设函数
的图像关于直线
对称.
(1)求
的值;
(2)判断并证明函数
在区间
上的单调性;
(3)若直线
与
的图像无公共点,且
,求实数
的取值范围.
同类题4
设
S
、
T
是
R
的两个非空子集,如果函数
满足:①
;②对任意
,
,当
时,恒有
,那么称函数
为集合
S
到集合
T
的“保序同构函数”.
(1)试写出集合
到集合
R
的一个“保序同构函数”;
(2)求证:不存在从集合
Z
到集合
Q
的“保序同构函数”;
(3)已知
是集合
到集合
的“保序同构函数”,求
s
和
t
的最大值.
同类题5
下列四个函数中,既是奇函数又是定义域上的增函数的是
A.y=x
3
B.y=x
2
C.y=log
4
(x+2)
D.y=
相关知识点
函数与导数
函数及其性质
函数的基本性质
函数的单调性
定义法判断函数的单调性
由奇偶性求函数解析式