刷题宝
  • 刷题首页
题库 高中数学

题干

定义在R上的函数f(x)>0,对任意x,y∈R都有f(x+y)=f(x)f(y)成立,且当x>0时,f(x)>1.
(1)求f(0)的值;
(2)求证f(x)在R上是增函数;
(3)若f(k•3x)f(3x﹣9x﹣2)<1对任意x∈R恒成立,求实数k的取值范围.
上一题 下一题 0.99难度 解答题 更新时间:2020-01-22 08:12:02

答案(点此获取答案解析)

同类题1

已知偶函数在上为减函数,且,则不等式
的解集为 .

同类题2

已知函数,其中.
(I)判断并证明函数的奇偶性;
(II)判断并证明函数在上的单调性;
(III)是否存在这样的负实数,使对一切恒成立,若存在,试求出取值的集合;若不存在,说明理由.

同类题3

已知函数f(x)是定义在(﹣4,4)上的奇函数,满足f(2)=1,当﹣4<x≤0时,有f(x)=.
(1)求实数a,b的值;
(2)求函数f(x)在区间(0,4)上的解析式,并利用定义证明其在该区间上的单调性;
(3)解关于m的不等式f(m2+1)+>0.

同类题4

已知函数,
(1)判断函数的单调性,并证明;
(2)求函数的最大值和最小值.

同类题5

已知.
(1)判断的奇偶性并说明理由;
(2)求证:函数在上是增函数.
相关知识点
  • 函数与导数
  • 函数及其性质
  • 函数的基本性质
  • 函数的单调性
  • 定义法判断函数的单调性
  • 基本不等式求和的最小值
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)