- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- + 求加权平均数
- 已知一组数据的加权平均数,求未知数据的值
- 运用加权平均数做决策
- 出错情况下的平均数问题
- 观察、猜想与证明
- 实践与应用(暂存)
小明某学期的数学平时成绩70分,期中考试80分,期末考试85分,若计算学期总评成绩的方法如下:平时:期中:期末=3:3:4,则小明总评成绩是________分.
某校规定学生的学期学业成绩由三部分组成:平时占20%,期中占30%,期末占50%,小颖的平时、期中、期末成绩分别为85分、90分、92分,则她本学期的学业成绩为90分,这个成绩是____平均数.(填“算术”或“加权”)
10支不同型号的签字笔的相关信息如下表所示,则这10支签字笔的平均单价是( )
型号 | A | B | C |
单价(元/支) | 1 | 1.5 | 2 |
数量(支) | 3 | 2 | 5 |
A.1.4元/支 | B.1.5元/支 | C.1.6元/支 | D.1.7元/支 |
我国淡水资源短缺问题十分突出,已成为我国经济和社会可持续发展的重要制约因素,节约用水是各地的一件大事.某校初三学生为了调查居民用水情况,随机抽查了某小区20户家庭的月用水量,结果如表所示:

(1)求这20户家庭月用水量的平均数、众数及中位数.
(2)政府为了鼓励节约用水,拟试行水价浮动政策.即设定每个家庭月基本用水量a(t),家庭月用水量不超过a(t)的部分按原价收费,超过a(t)的部分加倍收费.
①你认为以平均数作为该小区的家庭月基本用水量a(t)合理吗?为什么?(简述理由)
②你认为该小区的家庭月基本用水量a(t)为多少时较为合理?为什么?(简述理由)

(1)求这20户家庭月用水量的平均数、众数及中位数.
(2)政府为了鼓励节约用水,拟试行水价浮动政策.即设定每个家庭月基本用水量a(t),家庭月用水量不超过a(t)的部分按原价收费,超过a(t)的部分加倍收费.
①你认为以平均数作为该小区的家庭月基本用水量a(t)合理吗?为什么?(简述理由)
②你认为该小区的家庭月基本用水量a(t)为多少时较为合理?为什么?(简述理由)
某单位要招聘1名英语翻译,张明参加招聘考试的成绩如下表所示
若把听、说、读、写的成绩按3:3:2:2计算平均成绩,则张明的平均成绩为_____
| 听 | 说 | 读 | 写 |
张明 | 90 | 80 | 83 | 82 |
若把听、说、读、写的成绩按3:3:2:2计算平均成绩,则张明的平均成绩为_____
有甲、乙两班,甲班有m个人,乙班有n个人.在一次考试中甲班平均分是a分,乙班平均分是b分.则甲、乙两班在这次考试中的总平均分是( )
A.![]() | B.![]() | C.![]() | D.![]() |
某校生物小组7人到校外采集标本,其中2人每人采集到3件,3人每人采集到4件,2人每人采集到5件,则这个小组平均每人采集标本___________件.
“倡导全民阅读”、“推动国民素质和社会文明程度显著提高”已成为“十三五”时期的重要工作.教育主管部门对某学校青年学校青年教师2016年度阅读情况进行了问卷调查,并将收集的数据统计如表,根据表中的信息判断,下列结论错误的是( )


A.该学校中参与调查的青年教师人数为40人 |
B.该学校中青年教师2016年平均每人阅读8本书 |
C.该学校中青年教师2016年度看书数量的中位数为4本 |
D.该学校中青年教师2016年度看书数量的众数为4本 |