- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 求一组数据的平均数
- 已知一组数据的平均数,求未知数据的值
- 已知一组数据的平均数,求另一组相关数据的平均数
- + 利用平均数做决策
- 观察、猜想与证明
- 实践与应用(暂存)
下表记录了甲、乙、丙、丁四名运动员参加男子跳高选拔赛成绩的平均数x与方差S2:
根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择 .
| 甲 | 乙 | 丙 | 丁 |
平均数x(cm) | 175 | 173 | 175 | 174 |
方差S2(cm2) | 3.5 | 3.5 | 12.5 | 15 |
根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择 .
甲、乙两城市为了解决空气质量污染问题,对城市及其周边的环境污染进行了综合治理.在治理的过程中,环保部门每月初对两城市的空气质量进行监测,连续10个月的空气污染指数如图1所示.其中,空气污染指数≤50时,空气质量为优;50<空气污染指数≤100时,空气质量为良;100<空气污染指数≤150时,空气质量为轻微污染.
(1)请填写下表:
(2)请回答下面问题
①从平均数和中位数来分析,甲,乙两城市的空气质量.
②从平均数和方差来分析,甲,乙两城市的空气质量情况.
③根据折线图上两城市的空气污染指数的走势及优的情况来分析两城市治理环境污染的效果.
(1)请填写下表:
| 平均数 | 方差 | 中位数 | 空气质量为优的次数 |
甲 | 80 | | | |
乙 | 80 | 1060 | | |
(2)请回答下面问题
①从平均数和中位数来分析,甲,乙两城市的空气质量.
②从平均数和方差来分析,甲,乙两城市的空气质量情况.
③根据折线图上两城市的空气污染指数的走势及优的情况来分析两城市治理环境污染的效果.

下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数
与方差
:

根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择()



根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择()
A.甲 | B.乙 | C.丙 | D.丁 |
某班为选拔参加2009年学校数学文化节的选手,对部分学生进行了培训.培训期间共进行了10次模拟测试,其中两位同学的成绩如下表所示:
(1)根据图表中所示的信息填写下表:
(2)这两位同学的成绩各有什么特点(从不同的角度分别说出一条即可)?
(3)为了使参赛选手取得好成绩,应选谁参加活动?为什么?
| 一 | 二 | 三 | 四 | 五 | 六 | 七 | 八 | 九 | 十 |
甲 | 85 | 95 | 94 | 96 | 94 | 85 | 92 | 95 | 99 | 95 |
乙 | 80 | 99 | 100 | 99 | 90 | 82 | 81 | 80 | 90 | 99 |
(1)根据图表中所示的信息填写下表:
| 中位数 | 众数 | 极差 | 方差 |
甲 | 94.5 | 95 | | |
乙 | 90 | | 20 | 68.8 |
(2)这两位同学的成绩各有什么特点(从不同的角度分别说出一条即可)?
(3)为了使参赛选手取得好成绩,应选谁参加活动?为什么?
八年级一班要在赵研、钱进、孙兰、李丁四名同学中挑选一名同学去参加数学竞赛,四名同学在5次数学测试中成绩的平均数x及方差S2如下表所示:
如果选出一名成绩较好且状态稳定的同学去参赛,那么应选( )
| 甲 | 乙 | 丙 | 丁 |
![]() | 85 | 93 | 93 | 86 |
S2 | 3 | 3 | 3.5 | 3.7 |
如果选出一名成绩较好且状态稳定的同学去参赛,那么应选( )
A.赵研 | B.钱进 | C.孙兰 | D.李丁 |
甲、乙、丙、丁四名射击运动员进行淘汰赛,在相同条件下,每人射击10次,甲、乙两人的成绩如图所示,丙、丁二人的成绩如表所示.欲淘汰一名运动员,从平均数和方差两个因素分析,应淘汰( )

| 丙 | 丁 |
平均数 | 8 | 8 |
方差 | 1.2 | 1.8 |

A.甲 | B.乙 | C.丙 | D.丁 |
从甲、乙、丙三个厂家生产的同一种产品中,各抽出
件产品,对其使用寿命进行跟踪调查,结果如下(单位:年)
甲:
,
,
,
,
,
,
,
乙:
,
,
,
,
,
,
,
丙:
,
,
,
,
,
,
,
三家广告中都称该种产品的使用寿命是
年,请根据调查结果判断三个厂家在广告中分别运用了平均数,众数和中位数的哪一种数据作代表.

甲:








乙:








丙:








三家广告中都称该种产品的使用寿命是

某校招聘一名数学老师,对应聘者分别进行了教学能力、科研能力和组织能力三项测试,其中甲、乙两名应聘者的成绩如右表:(单位:分)
(1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将被录用?
(2)根据实际需要,学校将教学、科研和组织能力三项测试得分按 5:3:2 的比确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?
| 教学能力 | 科研能力 | 组织能力 |
甲 | 81 | 85 | 86 |
乙 | 92 | 80 | 74 |
(1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将被录用?
(2)根据实际需要,学校将教学、科研和组织能力三项测试得分按 5:3:2 的比确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?
某体校要从四名射击选手中选拔一名参加体育运动会,选拔赛中每名选手连续射靶10次,他们各自的平均成绩及其方差s2如表所示,如果要选出一名成绩高,且发挥稳定的选手参赛,则应选择的选手是________. 

某校要从甲、乙两名同学中挑选一人参加创新能力大赛,在最近的五次选拔测试中, 他俩的成绩分别如下表,请根据表中数据解答下列问题:
(1)把表格补充完整:
(2)在这五次测试中,成绩比较稳定的同学是多少;若将 80 分以上(含 80 分) 的成绩视为优秀,则甲、乙两名同学在这五次测试中的优秀率分别是多少;
(3)历届比赛表明,成绩达到80分以上(含 80分)就很可能获奖,成绩达到 90分以上(含90分)就很可能获得一等奖,那么你认为选谁参加比赛比较合适?说明你的理由.
| 第 1 次 | 第 2 次 | 第 3 次 | 第 4 次 | 第 5 次 | 平均分 | 众数 | 中位数 | 方差 |
甲 | 60 分 | 75 分 | 100 分 | 90 分 | 75 分 | 80 分 | 75 分 | 75 分 | 190 |
乙 | 70 分 | 90 分 | 100 分 | 80 分 | 80 分 | | 80 分 | 80 分 | |
(1)把表格补充完整:
(2)在这五次测试中,成绩比较稳定的同学是多少;若将 80 分以上(含 80 分) 的成绩视为优秀,则甲、乙两名同学在这五次测试中的优秀率分别是多少;
(3)历届比赛表明,成绩达到80分以上(含 80分)就很可能获奖,成绩达到 90分以上(含90分)就很可能获得一等奖,那么你认为选谁参加比赛比较合适?说明你的理由.