- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 求一组数据的平均数
- 已知一组数据的平均数,求未知数据的值
- 已知一组数据的平均数,求另一组相关数据的平均数
- + 利用平均数做决策
- 观察、猜想与证明
- 实践与应用(暂存)
为了从甲、乙两名同学中选拔一人参加射击比赛,在同等的条件下,教练给甲、乙两名同学安排了一次射击测验,每人打10发子弹.下表是甲、乙两人各自的射击情况记录(其中乙的记录表上射中9,10环的子弹数被墨水污染看不清楚,但是教练记得乙射中9,10环的子弹数均不为0发).
甲
乙
(1)求甲同学在这次测验中平均每次射中的环数;
(2)从这次测验的平均成绩的角度考虑,如果你是教练,你认为选谁参加比赛比较合适?并说明理由.
甲
中靶环数(环) | 5 | 6 | 8 | 9 | 10 |
射中此环的子弹数(发) | 4 | 1 | 3 | 1 | 1 |
乙
中靶环数(环) | 5 | 6 | 7 | 9 | 10 |
射中此环的子弹数(发) | 2 | 3 | 2 | | |
(1)求甲同学在这次测验中平均每次射中的环数;
(2)从这次测验的平均成绩的角度考虑,如果你是教练,你认为选谁参加比赛比较合适?并说明理由.
从A,B,C三个厂家生产的同一种产品中各抽出8件产品,对其使用寿命进行跟踪调查,结果(单位:年)如下:
三个厂家在广告中都称该种产品的使用寿命为8年,请根据调查结果判断厂家在广告中分别运用了平均数、中位数、众数中的哪一个?
A.3,4,5,6,8,8,8,10; |
B.5,6,6,6,8,8,12,13; |
C.3,3,4,7,9,10,11,12. |






| 平均数 | 中位数 | 众数 |
九![]() | 85 | | 85 |
九![]() | | 80 | |




在学校组织的“迎新年,做守法好公民”的知识竞赛中,每班参加比赛的人数相同,成绩分为
四个等级,其中相应等级的得分依次记为100分,90分,80分,70分.学校将某年级的1班和2班的成绩整理并绘制成如下的统计图:

请你根据以上提供的信息解答下列问题:
(1)此次竞赛中,2班成绩在
级以上(包括
级)的人数为____人;
(2)请你将表格补充完整:
(3)请从下列不同角度对这次竞赛成绩的结果进行分析;
①从平均数和中位数的角度来比较1班和2班的分成绩;
②从平均数和众数的角度来比较1班和2班的成绩;
③从
级以上(包括
级)的人数的角度来比较1班和2班的成绩.



请你根据以上提供的信息解答下列问题:
(1)此次竞赛中,2班成绩在


(2)请你将表格补充完整:
班级 | 平均数(分) | 中位数(分) | 众数(分) |
1班 | | 90 | |
2班 | 87.6 | | 100 |
(3)请从下列不同角度对这次竞赛成绩的结果进行分析;
①从平均数和中位数的角度来比较1班和2班的分成绩;
②从平均数和众数的角度来比较1班和2班的成绩;
③从


某中学九年级开展“社会主义核心价值观”演讲比赛活动,九(1)班、九(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出5名选手的复赛成绩(满分100分)如图所示.

根据图中数据解决下列问题:
(1)九(1)班复赛成绩的众数是 分,九(2)班复赛成绩的中位数是 分;
(2)请你求出九(1)班和九(2)班复赛的平均成绩和方差,并说明哪个班的成绩更稳定.

根据图中数据解决下列问题:
(1)九(1)班复赛成绩的众数是 分,九(2)班复赛成绩的中位数是 分;
(2)请你求出九(1)班和九(2)班复赛的平均成绩和方差,并说明哪个班的成绩更稳定.
甲、乙两班举行数学知识竞赛,参赛学生的竞赛得分统计结果如下表:
某同学分析上表后得到如下结论:
①甲、乙两班学生的平均成绩相同;
②乙班优秀的人数少于甲班优秀的人数(竞赛得分
分为优秀);
③甲班成绩的波动性比乙班小.
上述结论中正确的是_____.(填写所有正确结论的序号)
班级 | 参赛人数 | 平均数 | 中位数 | 方差 |
甲 | ![]() | ![]() | ![]() | ![]() |
乙 | ![]() | ![]() | ![]() | ![]() |
某同学分析上表后得到如下结论:
①甲、乙两班学生的平均成绩相同;
②乙班优秀的人数少于甲班优秀的人数(竞赛得分

③甲班成绩的波动性比乙班小.
上述结论中正确的是_____.(填写所有正确结论的序号)
为了推动我区教育教学发展,加快教师的成长与提升,2018-2019学年度某名师工作室开展了多次送教下乡活动.在某次研讨课活动中,为了分析某节复习课的教学效果,课前,张老师让八(
)班每位同学做
道类似题目(与这节课内容相关)析某节复至少容对,解题情况如图所示:课后,再让学生做
道类似的题目.结果如表所示.已知每位学生至少答对题.


(1)根据图表信息填空:
;
.
(2)该班课前解题时答对题数的众数是 ;课后答对题数的中位数是 .
(3)通过计算课前,课后学生答对题数的平均数,评价这节复习课的教学效果.





(1)根据图表信息填空:


(2)该班课前解题时答对题数的众数是 ;课后答对题数的中位数是 .
(3)通过计算课前,课后学生答对题数的平均数,评价这节复习课的教学效果.
甲、乙两位同学参加数学竞赛辅导,三项培训内容的考试成绩如下表,现要选拔一人参赛.
(1)若按三项考试成绩的平均分选拔,应选谁参赛;
(2)若代数、几何、综合分别按20%、30%、50%的比例计算平均分,应选谁参赛.
(1)若按三项考试成绩的平均分选拔,应选谁参赛;
(2)若代数、几何、综合分别按20%、30%、50%的比例计算平均分,应选谁参赛.
| 代数 | 几何 | 综合 |
甲 | 85 | 92 | 75 |
乙 | 70 | 83 | 90 |
某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分):
方案①:所有评委所给分的平均数;
方案②:在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余给分的平均数;
方案③:所有评委所给分的中位数;
方案④:所有评委所给分的众数。
为了探究上述方案的合理性,先地某个同学的演讲成绩进行了统计实验,如图是这个同学的得分统计图。
(1)分别按上述4个方案计算这个同学演讲的最后得分;
(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分,并说明你的理由。
方案①:所有评委所给分的平均数;
方案②:在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余给分的平均数;
方案③:所有评委所给分的中位数;
方案④:所有评委所给分的众数。
为了探究上述方案的合理性,先地某个同学的演讲成绩进行了统计实验,如图是这个同学的得分统计图。
(1)分别按上述4个方案计算这个同学演讲的最后得分;
(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分,并说明你的理由。

某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:
(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺
序.
(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分.根据规定,请你说明谁将被录用.
| 笔试 | 面试 | 体能 |
甲 | 83 | 79 | 90 |
乙 | 85 | 80 | 75 |
丙 | 80 | 90 | 73 |
(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺

(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分.根据规定,请你说明谁将被录用.