在凸多边形中, 四边形有2条对角线, 五边形有5条对角线, 经过观察、探索、归纳, 你认为凸八边形的对角线条数应该是多少条? 简单扼要地写出你的思考过程.
探究归纳题:

(1)试验分析:
如图1,经过A点可以做__________条对角线;同样,经过B点可以做__________条;经过C点可以做__________条;经过D点可以做__________条对角线.
通过以上分析和总结,图1共有___________条对角线.
(2)拓展延伸:
运用(1)的分析方法,可得:
图2共有_____________条对角线;
图3共有_____________条对角线;
(3)探索归纳:
对于n边形(n>3),共有_____________条对角线.(用含n的式子表示)
(4)特例验证:
十边形有__________________对角线.

(1)试验分析:
如图1,经过A点可以做__________条对角线;同样,经过B点可以做__________条;经过C点可以做__________条;经过D点可以做__________条对角线.
通过以上分析和总结,图1共有___________条对角线.
(2)拓展延伸:
运用(1)的分析方法,可得:
图2共有_____________条对角线;
图3共有_____________条对角线;
(3)探索归纳:
对于n边形(n>3),共有_____________条对角线.(用含n的式子表示)
(4)特例验证:
十边形有__________________对角线.
我们知道过n边形的一个顶点可以做(n-3)条对角线,这(n-3)条对角线把三角形分割成(n-2)个三角形,想一想这是为什么?如图1.

图1
如图2,在n边形的边上任意取一点,连结这点与各顶点的线段可以把n边形分成几个三角形?

图2
想一想,利用这两个图形,怎样证明多边形的内角和定理.

图1
如图2,在n边形的边上任意取一点,连结这点与各顶点的线段可以把n边形分成几个三角形?

图2
想一想,利用这两个图形,怎样证明多边形的内角和定理.