- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 多边形及其内角和
- 认识多边形
- 多边形的对角线
- 多边形的内角和
- 多边形的外角和
- 平行四边形
- 特殊的平行四边形
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,小东在足球场的中间位置,从A点出发,每走6m向左转60°,已知AB=BC=6m.
(1)小东是否能走回A点,若能回到A点,则需走几m,走过的路径是一个什么图形?为什么?(路径A到B到C到…)
(2)求出这个图形的内角和.
(1)小东是否能走回A点,若能回到A点,则需走几m,走过的路径是一个什么图形?为什么?(路径A到B到C到…)
(2)求出这个图形的内角和.

如图,小亮从点O出发,前进5m后向右转30°,再前进5m后又向右转30°,这样走n次后恰好回到点O处,小亮走出的这个n边形的每个内角是__________°,周长是___________________m.

如果一个多边形的各边都相等,且各内角也都相等,那么这个多边形就叫做正多边形,如图,就是一组正多边形,观察每个正多边形中
的变化情况,解答下列问题.

(1)将下面的表格补充完整:

(2)根据规律,是否存在一个正n边形,使其中的
?若存在,直接写出
的值;若不存在,请说明理由.
(3)根据规律,是否存在一个正n边形,使其中的
?若存在,直接写出
的值;若不存在,请说明理由.


(1)将下面的表格补充完整:

(2)根据规律,是否存在一个正n边形,使其中的


(3)根据规律,是否存在一个正n边形,使其中的

