- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 勾股定理及应用
- + 勾股定理的逆定理
- 判断三边能否构成直角三角形
- 图形上与已知两点构成直角三角形的点
- 在网格中判断直角三角形
- 利用勾股定理的逆定理求解
- 勾股定理逆定理的实际应用
- 勾股定理逆定理的拓展问题
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
在△ABC中,
,设c为最长边.当
时,△ABC是直角三角形;当
时,利用代数式
和
的大小关系,可以判断△ABC的形状(按角分类).
(1)请你通过画图探究并判断:当△ABC三边长分别为6,8,9时,△ABC为____三角形;当△ABC三边长分别为6,8,11时,△ABC为______三角形.
(2)小明同学根据上述探究,有下面的猜想:“当
时,△ABC为锐角三角形;当
时,△ABC为钝角三角形.” 请你根据小明的猜想完成下面的问题:
当
,
时,最长边c在什么范围内取值时,△ABC是直角三角形、锐角三角形、钝角三角形?





(1)请你通过画图探究并判断:当△ABC三边长分别为6,8,9时,△ABC为____三角形;当△ABC三边长分别为6,8,11时,△ABC为______三角形.
(2)小明同学根据上述探究,有下面的猜想:“当


当


下列四组线段a、b、c,能组成直角三角形的是( )
A.a=4,b=5,c=6 | B.a=4,b=3,c=5 |
C.a=2,b=3,c=4 | D.a=1,b=![]() |