- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 勾股定理及应用
- + 勾股定理的逆定理
- 判断三边能否构成直角三角形
- 图形上与已知两点构成直角三角形的点
- 在网格中判断直角三角形
- 利用勾股定理的逆定理求解
- 勾股定理逆定理的实际应用
- 勾股定理逆定理的拓展问题
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,为了庆祝祖国70周年大庆,某彩灯工厂设计了一款彩灯.平面上,不同颜色的彩色线段从
点发出,恰好依次落到边长为1的小正方形格点上,形成美丽的灯光效果,烘托了快乐的节日氛围.则
的长度为___________.照此规律,
的长度为___________.




问题情境:已知Rt△ABC的周长为30,斜边长c=13,求△ABC的面积.、
解法展示:设Rt△ABC的两直角边长分别为a,b,则a+b+c=①______,
因为c=13,所以a+b=②______,
所以(a+b)2=③______,所以a2+ b2+④_____=289.
因为a2+b2=c2,所以c2+2ab=289,
所以⑤______+2ab=289,所以ab=⑥______(第1步),
所以△ABC的面积=
ab=
×⑦______=⑧______(第2步).
合作探究:(1)对解法展示进行填空.
(2)上述解题过程中,由第1步到第2步体现出来的数学思想是______(填序号).
①整体思想;②数形结合思想;③分类讨论思想.
方法迁移:
(3)已知一直角三角形的面积为24,斜边长为10,求这个直角三角形的周长.
解法展示:设Rt△ABC的两直角边长分别为a,b,则a+b+c=①______,
因为c=13,所以a+b=②______,
所以(a+b)2=③______,所以a2+ b2+④_____=289.
因为a2+b2=c2,所以c2+2ab=289,
所以⑤______+2ab=289,所以ab=⑥______(第1步),
所以△ABC的面积=


合作探究:(1)对解法展示进行填空.
(2)上述解题过程中,由第1步到第2步体现出来的数学思想是______(填序号).
①整体思想;②数形结合思想;③分类讨论思想.
方法迁移:
(3)已知一直角三角形的面积为24,斜边长为10,求这个直角三角形的周长.
在
中,
、
、
三边的长分别为
、
、
,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点
(即
三个顶点都在小正方形的顶点处),如图①所示.这样不需求
的高,而借用网格就能计算出它的面积.
(1)请你将
的面积直接填写在横线上.__________________
(2)我们把上述求
面积的方法叫做构图法.若
三边的长分别为
、
、
(
),请利用图②的正方形网格(每个小正方形的边长为
)画出相应的
,并求出它的面积.
(3)若△ABC三边的长分别为
、
、
(m>0,n>0,且m≠n),请利用图③的长方形网格试运用构图法求出这三角形的面积.










(1)请你将

(2)我们把上述求








(3)若△ABC三边的长分别为



