- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 勾股定理
- + 勾股定理的应用
- 利用勾股定理求梯子滑落高度
- 利用勾股定理求旗杆高度
- 利用勾股定理求小鸟飞行距离
- 利用勾股定理求大树折断前的高度
- 利用勾股定理解决水杯中筷子问题
- 利用勾股定理解决航海问题
- 利用勾股定理求河宽
- 利用勾股定理求台阶上地毯长度
- 利用勾股定理判断汽车是否超速
- 利用勾股定理判断是否受台风影响
- 利用勾股定理选址使到两地距离相等
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,一架长2.5m的梯子,斜靠在一竖直的墙上,这时,梯底距墙底端0.7m,如果梯子的顶端沿墙下滑0.4m,则梯子的底端将滑出多少米?

如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km的速度向北偏东60˚的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.

(1)A城是否受到这次台风的影响?为什么?
(2)若A城受到这次台风影响,则A城遭受这次台风影响有多长时间?

(1)A城是否受到这次台风的影响?为什么?
(2)若A城受到这次台风影响,则A城遭受这次台风影响有多长时间?
“折竹抵地”问题自《九章算术》中,即:今有竹高一丈,末折抵地,去本四尺,问折者高几何?意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远,则折断后的竹子高度为________ 尺.(注:
)


小强想知道学校旗杆的高度,他发现旗杆上的绳子垂到地面上还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,则旗杆的高度是______ 米.

如图,在△ABC中,
,AD平分∠CAB,交CB于点D,过点D作
于点
(1)求BD的长
(2)AE与BE相等吗?说明理由。
(3)求△ABC的面积


A.若![]() |
(2)AE与BE相等吗?说明理由。
(3)求△ABC的面积

如图,一架梯子斜靠在一面墙上,梯子顶端离地面8米,底端距墙面6米,当梯子滑动到与地面成
角时,梯子的顶端向下水平滑动了__________米.


如图,小华将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度为_________ .

如图,把长方形纸片ABCD折叠,B、C两点恰好重合落在AD边上的点P处, 已知∠MPN=90°,且PM=3,PN=4,那么矩形纸片ABCD的面积为( )


A.26 | B.28.8 | C.26.8 | D.28 |