- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 勾股定理
- + 勾股定理的应用
- 利用勾股定理求梯子滑落高度
- 利用勾股定理求旗杆高度
- 利用勾股定理求小鸟飞行距离
- 利用勾股定理求大树折断前的高度
- 利用勾股定理解决水杯中筷子问题
- 利用勾股定理解决航海问题
- 利用勾股定理求河宽
- 利用勾股定理求台阶上地毯长度
- 利用勾股定理判断汽车是否超速
- 利用勾股定理判断是否受台风影响
- 利用勾股定理选址使到两地距离相等
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以72千米/时的速度行驶时,A处受噪音影响的时间为( )


A.12秒 | B.16秒 | C.20秒 | D.30秒. |
一个直角三角形的斜边长比一条直角边长多2cm,另一条直角边长6cm,那么这个直角三角形的斜边长为( )
A.4cm | B.8cm | C.10cm | D.12cm |
有一根长24cm的小木棒,把它分成三段,组成一个直角三角形,且每段的长度都是偶数,则三段小木棒的长度分别是__cm,__cm,__cm.
你听说过亡羊补牢的故事吗?如图,为了防止羊的再次丢次,小明爸爸要在高0.9 m,宽1.2 m的栅栏门的相对角顶点间加一个加固木板,这条木板需________ m长.

《九章算术》中记载:“今有竹高一丈,未折抵地,去根三尺,问折者高几何?”译文:有一根竹子原高一丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?我们用线段OA和线段AB来表示竹子,其中线段AB表示竹子折断部分,用线段OB表示竹梢触地处离竹根的距离,则竹子折断处离地面的高度OA是_____尺.

一种盛饮料的圆柱形杯,测得内部底面半径为2.5cm,高为12cm,吸管放进杯里(如图所示),杯口外面至少要露出3.6cm,为节省材料,管长acm的取值范围是__.

在直角三角形中,如果有一个角是30°,这个直角三角形的三边之比最有可能的是( )
A.3:4:5 | B.1:1:![]() | C.5:12:13 | D.1:![]() |
将一根24cm的筷子置于底面直径为8cm,高为15cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的取值范围是_____.

放学以后,萍萍和晓晓从学校分手,分别沿东南方向和西南方向回家,若萍萍和晓晓行走的速度都是40米/分,萍萍用15分钟到家,晓晓用20分钟到家,萍萍家和晓晓家的距离为( )
A.600米 | B.800米 | C.1000米 | D.不能确定 |