如图,在△中,∠>∠平分∠
(1)若∠=70°,∠=30°.
①求∠=    °;②∠= °.
(2)探究:小明认为如果只要知道∠-∠=n°,就能求出∠的度数?请你就这个问题展开探究:
①实验:填表
的度数
的度数
的度数
70°
30°
(此格不需填写)
65°
25°
 
50°
20°
 
80°
56°
 
 
②结论:当时,试用含的代数式表示∠的度数,并写出推导过程;
③应用:若∠=56°,∠=12°,则∠= °.
当前题号:1 | 题型:解答题 | 难度:0.99
下列长度的3根小木棒能搭成三角形的是().
A.3cm,5 cm,5 cmB.4 cm,5 cm,9 cm
C.4 cm,6 cm,11 cm.D.12 cm,5 cm,5 cm
当前题号:2 | 题型:单选题 | 难度:0.99
如图所示,已知AB⊥AC,∠DAB=∠C,则∠C+∠CAD=
当前题号:3 | 题型:填空题 | 难度:0.99
(本题满分14分)
问题1如图①,一张三角形ABC纸片,点D、E分别是△ABC边上两点.
研究(1):如果沿直线DE折叠,使A点落在CE上,则∠BDA′与∠A的数量关系是什么?
研究(2):如果折成图②的形状,猜想∠BDA′、∠CEA′和∠A的数量关系是什么?
研究(3):如果折成图③的形状,猜想∠BDA′、∠CEA′和∠A的数量关系,并说明理由.
研究(4):将问题1推广,如图④,将四边形ABCD纸片沿EF折叠,使点A、B落在四边形EFCD的内部时,∠1+∠2与∠A、∠B之间的数量关系是什么?
当前题号:4 | 题型:解答题 | 难度:0.99
(本题满分6分)如图,已知点P在∠AOB内部,请你利用直尺(没有刻度)和圆规在∠AOB的角平分线上求作一点Q,使得PQ⊥OB.(不要求写作法,但要保留作图痕迹)
当前题号:5 | 题型:解答题 | 难度:0.99
如图,∠A+∠B=90°,点D在线段AB上,点E在线段AC上,DF平分∠BDE,DF与BC交于点F.

(1)、依题意补全图形;
(2)、若∠B+∠BDF=90°,求证:∠A=∠EDF.
证明:∵∠A+∠B=90°,∠B+∠BDF=90°,
(理由:     ) .
又∵  
∴∠BDF="∠EDF" (理由: ) .
∴∠A=∠EDF.
当前题号:6 | 题型:解答题 | 难度:0.99
如图,在△ABC中,∠BAC=90°,AB=6,AC=8,点P是BC边上任意一点(B、C除外)PE⊥AB于点E,PF⊥AC于点F,连接EF,则EF的最小值为  
当前题号:7 | 题型:填空题 | 难度:0.99
如图,△ABE和△ADC是△ABC分别沿着AB,AC边翻折180°形成的,若∠1∶∠2∶∠3=11∶5∶2,则∠α的度数为
当前题号:8 | 题型:填空题 | 难度:0.99
三角形ABC中,AB=6,AC=4,AD是BC边上的中线,求AD的取值范围.(共5分)
当前题号:9 | 题型:解答题 | 难度:0.99
已知三角形两边长分别为4和9,则第三边的取值范围是
当前题号:10 | 题型:填空题 | 难度:0.99