- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 几何图形初步
- 相交线与平行线
- + 三角形
- 三角形基础
- 全等三角形
- 等腰三角形
- 勾股定理
- 四边形
- 圆
- 命题与证明
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,△ABC中∠A=30°,E是AC边上的点,先将△ABE沿着BE翻折,翻折后△ABE的AB边交AC于点D,又将△BCD沿着BD翻折,C点恰好落在BE上,此时∠CDB=82°,则原三角形的∠B= .


在△ABC和△A′B′C′中,下列条件:①AB=A′B′,②BC=B′C′,③AC=A′C′,④∠A=∠A′,⑤∠B=∠B′,⑥∠C=∠C′,不能判定△ABC≌△A′B′C′的是( )
A.![]() | B.![]() | C.![]() | D.![]() |
已知:如图,D、E是△ABC中BC边上的两点,AD=AE,要证明△ABE≌△ACD,应该再增加一个什么条件?请你增加这个条件后再给予证明.

已知:如图,在△ABC中,∠B=∠DAC,则∠BAC和∠ADC的关系是( )


A.∠BAC<∠ADC | B.∠BAC=∠ADC |
C.∠BAC>∠ADC | D.不能确定 |
已知:在
和
中,
,
,将
如图放置,使得
的两条边分别经过点
和点
.

(1)当将
如图1摆放时,
______
.
(2)当将
如图2摆放时,试问:
等于多少度?请说明理由.
(3)如图2,是否存在将
摆放到某个位置时,使得
,
分别平分
和
?如果存在,请画出图形或说明理由.如果不存在,请改变题目中的一个已知条件,使之存在.









(1)当将



(2)当将


(3)如图2,是否存在将





(1)已知:如图1,在△ABC中,∠ABC的平分线与∠ACB的平分线交于点O,求证:∠BOC=90°+
∠A;

(2)如图2,在△ABC中,BP,CP分别是△ABC的外角∠DBC和∠ECB的平分线,试探究∠BPC与∠A的关系.
(3)如图3,在△ABC中,CE平分∠ACB,BE是△ABC的外角∠ABD的平分线,试探究∠BEC与∠A的关系.


(2)如图2,在△ABC中,BP,CP分别是△ABC的外角∠DBC和∠ECB的平分线,试探究∠BPC与∠A的关系.
(3)如图3,在△ABC中,CE平分∠ACB,BE是△ABC的外角∠ABD的平分线,试探究∠BEC与∠A的关系.
已知△ABC,(1)如图①,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=90°+
∠A;(2)如图②,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90°-∠A;(3)如图③,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°-
∠A.上述说法正确的个数是( )




A.0个 | B.1个 | C.2个 | D.3个 |