- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 几何图形初步
- 相交线与平行线
- + 三角形
- 三角形基础
- 全等三角形
- 等腰三角形
- 勾股定理
- 四边形
- 圆
- 命题与证明
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
问题提出
(1)如图①,已知
中,
,将
绕点O逆时针旋转90°得到
,连接
.则
______;

问题探究
(2)如图②,已知
是边长为
的等边三角形,以
为边向外作等边
,P为
内一点,将线段
绕点C逆时针旋转60°,点P的对应点为点Q,连接
,求
的最小值;

问题解决
(3)如图③,矩形场地
为一个货运场,其中
米,
米,顶点A、D为两个出口,现想在货运广场内建一个货物堆放平台P,在
边上(含B,C两点)开一个货物入口M,并修建三条专用车道
、
、
.若修建专用车道的费用为10000元/米(车道宽度不计),当M、P建在何处时,修建专用车道的费用最少?最少费用为多少?(结果保留根号)
(1)如图①,已知







问题探究
(2)如图②,已知









问题解决
(3)如图③,矩形场地








校园内有两棵树,相距12m,一棵树高10m,另一棵树高5m,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞________m.
将一根长为17cm的筷子,置于内半径为3cm、高为8cm的圆柱形水杯中.设筷子露在杯子外面的长度为
,则
的取值范围是( )


A.![]() | B.![]() | C.![]() | D.![]() |
如图的方格纸中,每一个小方格都是边长为1的正方形,找出格点C,使
成为等腰三角形,这样的格点C的个数有( )



A.8个 | B.9个 | C.10个 | D.11个 |
如果三角形有一边上的中线恰好等于这边的长,那么称这个三角形为这边上的“奇特三角形”,这条边称为“奇特边”.
(1)如图1,已知△ABC是奇特三角形,
,且∠C=90°.
①△ABC的奇特边是 ;
②设
,
,
,求a:b:c;
(2)如图2,AM是△ABC的中线,若△ABC是BC边上的奇特三角形,找出BC2与AB2+AC2之间的关系;
(3)如图3,在四边形ABCD中,∠B=90°(AB<BC),
,对角线AC把它分成了两个奇特三角形,且△ACD是以AC为腰的等腰三角形,求等腰△ACD的底边长.
(1)如图1,已知△ABC是奇特三角形,

①△ABC的奇特边是 ;
②设



(2)如图2,AM是△ABC的中线,若△ABC是BC边上的奇特三角形,找出BC2与AB2+AC2之间的关系;
(3)如图3,在四边形ABCD中,∠B=90°(AB<BC),

