问题情景:如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.
(1)数学活动小组经过讨论形成下列推理,请你补全推理依据.
如图2,过点P作PE∥AB,
∵PE∥AB(作图知)
又∵AB∥CD,
∴PE∥C
∴∠A+∠APE=180°.
∠C+∠CPE=180°.( )
∵∠PAB=130°,∠PCD=120°,
∴∠APE=50°,∠CPE=60°
∴∠APC=∠APE+∠CPE=110°.
问题迁移:
(2)如图3,AD∥BC,当点P在A、B两点之间运动时,∠ADP=α,∠BCP=β,求∠CPD与α、β之间有何数量关系?请说明理由.
问题解决:
(3)在(2)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD与α、β之间的数量关系 .
(1)数学活动小组经过讨论形成下列推理,请你补全推理依据.
如图2,过点P作PE∥AB,
∵PE∥AB(作图知)
又∵AB∥CD,
∴PE∥C
A.( ) |
∠C+∠CPE=180°.( )
∵∠PAB=130°,∠PCD=120°,
∴∠APE=50°,∠CPE=60°
∴∠APC=∠APE+∠CPE=110°.
问题迁移:
(2)如图3,AD∥BC,当点P在A、B两点之间运动时,∠ADP=α,∠BCP=β,求∠CPD与α、β之间有何数量关系?请说明理由.
问题解决:
(3)在(2)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD与α、β之间的数量关系 .

如图,一条公路修到湖边时,需拐弯绕湖而过;如果第一次拐角∠A是120°,第二次拐角∠B是150°,第三次拐角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是__________


(1)(感知)如图①,
,点
在直线
与
之间,连接
、
,试说明
.下面给出了这道题的解题过程,请完成下面的解题过程(填恰当的理由).

证明:如图①过点
作
.
( ),
(已知),EF
(辅助线作法),
( ),
( ),
,
( ).
(2)(探究)当点
在如图②的位置时,其他条件不变,试说明
.

(3)(应用)如图③,延长线段
交直线
于点
,已知
,
,则
的度数为 .(请直接写出答案)








证明:如图①过点









(2)(探究)当点



(3)(应用)如图③,延长线段







感知与填空:如图①,直线
,求证:
.

阅读下面的解答过程,并填上适当的理由,
解:过点
作直线
,
( )
(已知),
,
( )
( )
,
( )
应用与拓展:如图②,直线
,若
.

则
度
方法与实践:如图③,直线
,若
,则
度.



阅读下面的解答过程,并填上适当的理由,
解:过点









应用与拓展:如图②,直线



则

方法与实践:如图③,直线




综合与探究:
将三角形纸板如图放置,点P是边AB边上一点,DF∥CE,∠PCE=∠α,∠PDF=∠β,
探究:
(1)如果α=30°,β=40°,则∠DPC=___________.
猜想:
(2)当点P在E、F两点之间运动时,∠DPC与α、β之间有何数量关系?并说明理由;
拓展:
(3)如果点P在E、F两点外侧运动时(点P与点A、B、E、F四点不重合),上述(2)中的结论是否还成立?并说明理由.
将三角形纸板如图放置,点P是边AB边上一点,DF∥CE,∠PCE=∠α,∠PDF=∠β,
探究:
(1)如果α=30°,β=40°,则∠DPC=___________.
猜想:
(2)当点P在E、F两点之间运动时,∠DPC与α、β之间有何数量关系?并说明理由;
拓展:
(3)如果点P在E、F两点外侧运动时(点P与点A、B、E、F四点不重合),上述(2)中的结论是否还成立?并说明理由.

下列说法:
①若a与c相交,则a与b相交;
②若a∥b,b∥c,那么a∥c;
③过一点有且只有一条直线与已知直线平行;
④在同一平面内,两条直线的位置关系有平行、相交、垂直三种.
其中错误的有( )
①若a与c相交,则a与b相交;
②若a∥b,b∥c,那么a∥c;
③过一点有且只有一条直线与已知直线平行;
④在同一平面内,两条直线的位置关系有平行、相交、垂直三种.
其中错误的有( )
A.3个 | B.2个 | C.1个 | D.0个 |
下列说法中,正确的有( )
①一条直线的平行线只有一条:
②过一点可以作一条直线与已知直线平行;
③过一点作直线的平行线仅有一条或不存在;
④过直线外一点有且只有一条直线与已知直线平行.
①一条直线的平行线只有一条:
②过一点可以作一条直线与已知直线平行;
③过一点作直线的平行线仅有一条或不存在;
④过直线外一点有且只有一条直线与已知直线平行.
A.1个 |
B.2个 |
C.3个 |
D.4个 |
下列说法不正确的是( )
A.若两个相等的角有一组边平行,则另一组边也平行 |
B.两条直线相交,所成的两组对顶角的平分线互相垂直 |
C.两条平行线被第三条直线所截,同旁内角的平分线互相垂直 |
D.经过直线外一点,有且只有一条直线与已知直线平行 |