- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 几何图形初步
- + 相交线与平行线
- 相交线及其所成的角
- 平行线及其判定
- 平行线的性质
- 三角形
- 四边形
- 圆
- 命题与证明
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
阅读下面材料,完成相应的任务:

(1)小明在研究命题①时,在图1的正方形网格中画出两个符合条件的四边形,由此判断命题①是 命题(填“真”或“假”);
(2)小彬经过探究发现命题②是真命题,请你结合图2证明这一命题;
(3)小颖经过探究又提出了一个新的命题:“若AB=A′B′,BC=B′C′,CD=C′D' , ,则四边形ABCD≌四边形A′B′C′D′,请在横线上填写两个关于“角”的条件,使该命题为真命题.

(1)小明在研究命题①时,在图1的正方形网格中画出两个符合条件的四边形,由此判断命题①是 命题(填“真”或“假”);
(2)小彬经过探究发现命题②是真命题,请你结合图2证明这一命题;
(3)小颖经过探究又提出了一个新的命题:“若AB=A′B′,BC=B′C′,CD=C′D' , ,则四边形ABCD≌四边形A′B′C′D′,请在横线上填写两个关于“角”的条件,使该命题为真命题.

新知学习,若一条线段把一个平面图形分成面积相等的两部分,我们把这条段线做该平面图形的二分线解决问题:
(1)①三角形的中线、高线、角平分线中,一定是三角形的二分线的是_______
②如图1,已知△ABC中,AD是BC边上的中线,点E,F分别在AB,DC上,连接EF,与AD交于点G,若
则EF_____(填“是”或“不是”)△ABC的一条二分线.并说明理由.

(2)如图2,四边形ABCD中,CD平行于AB,点G是AD的中点,射线CG交射线BA于点E,取EB的中点F,连接CF.求证:CF是四边形ABCD的二分线.
(1)①三角形的中线、高线、角平分线中,一定是三角形的二分线的是_______
②如图1,已知△ABC中,AD是BC边上的中线,点E,F分别在AB,DC上,连接EF,与AD交于点G,若


(2)如图2,四边形ABCD中,CD平行于AB,点G是AD的中点,射线CG交射线BA于点E,取EB的中点F,连接CF.求证:CF是四边形ABCD的二分线.

如图1,△ABC中,点D是BC的中点,BE∥AC,过点D的直线EF交BE于点E,交AC于点
A.![]() (1)求证:BE=CF (2)如图2,过点D作DG⊥DF交AB于点G,连结GF,请你判断BG+CF与GF的大小关系,并说明理由. |
如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为___________.

如图,点C、E分别在直线AB、DF上,小华想知道∠ACE和∠DEC是否互补,但是他没有带量角器,只带了一副三角板,于是他想了这样一个办法:首先连结CF,再找出CF的中点O,然后连结EO并延长EO和直线AB相交于点B,经过测量,他发现EO=BO,因此他得出结论:∠ACE和∠DEC互补,而且他还发现BC=E

A.小华的想法对吗?为什么? |
