- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 几何图形初步
- + 相交线与平行线
- 相交线及其所成的角
- 平行线及其判定
- 平行线的性质
- 三角形
- 四边形
- 圆
- 命题与证明
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
完成下面的证明.如图,已知AB∥CD,∠B=∠C,

求证:∠1=∠2.
证明:∵AB∥CD(已知)
∴∠B= ( ).
∵∠B=∠C(已知)
∴∠BFD=∠C(等量代换)
∴EC∥ ( )
∴∠2= (两直线平行,同位角相等)
∵∠1= ( )
∴∠1=∠2(等量代换).

求证:∠1=∠2.
证明:∵AB∥CD(已知)
∴∠B= ( ).
∵∠B=∠C(已知)
∴∠BFD=∠C(等量代换)
∴EC∥ ( )
∴∠2= (两直线平行,同位角相等)
∵∠1= ( )
∴∠1=∠2(等量代换).
如图,已知EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD(请填空)

解:∵EF∥AD
∴∠2= (
又∵∠1=∠2
∴∠1=∠3( )
∴AB∥ ( )
∴∠BAC+ =180°( )
∵∠BAC=70°( )
∴∠AGD= ( )

解:∵EF∥AD
∴∠2= (
又∵∠1=∠2
∴∠1=∠3( )
∴AB∥ ( )
∴∠BAC+ =180°( )
∵∠BAC=70°( )
∴∠AGD= ( )
如图:已知∠B=∠BGD,∠DGF=∠F,求证:∠B+∠F=180°.
请你认真完成下面的填空.
证明:∵∠B=∠BGD ( 已知 )
∴AB∥CD ( )
∵∠DGF=∠F;( 已知 )
∴CD∥EF ( )
∴AB∥EF ( )
∴∠B+∠F=180°( ).
请你认真完成下面的填空.
证明:∵∠B=∠BGD ( 已知 )
∴AB∥CD ( )
∵∠DGF=∠F;( 已知 )
∴CD∥EF ( )
∴AB∥EF ( )
∴∠B+∠F=180°( ).

如图,已知AB∥CD.写出图形中∠P和∠A,∠C的关系( )


A.∠C=∠P﹣∠A | B.∠P=∠C﹣∠A |
C.∠P=∠A+∠C D. ∠C=∠A﹣∠P |