- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 几何图形初步
- + 相交线与平行线
- 相交线及其所成的角
- 平行线及其判定
- 平行线的性质
- 三角形
- 四边形
- 圆
- 命题与证明
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=125°,∠2=85°,求∠3的度数.

小聪的做法是:∵l1,l4被l3所截,l4∥l1.
∴∠3+∠4=∠1=125°
而∠4=∠2=85°
∴∠3=125°﹣∠4
∴∠3=40°
写出你与小聪不同的一个解法.

小聪的做法是:∵l1,l4被l3所截,l4∥l1.
∴∠3+∠4=∠1=125°
而∠4=∠2=85°
∴∠3=125°﹣∠4
∴∠3=40°
写出你与小聪不同的一个解法.
已知:如图,
,DF平分
,BE平分
.
求证:
证明:
,( )
.( )
又
平分
,( )
BE平分
,( )
______,( )
______,( )
.( )



求证:

证明:


又


BE平分





问题情景:如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.
(1)数学活动小组经过讨论形成下列推理,请你补全推理依据.
如图2,过点P作PE∥AB,
∵PE∥AB(作图知)
又∵AB∥CD,
∴PE∥C
∴∠A+∠APE=180°.
∠C+∠CPE=180°.( )
∵∠PAB=130°,∠PCD=120°,
∴∠APE=50°,∠CPE=60°
∴∠APC=∠APE+∠CPE=110°.
问题迁移:
(2)如图3,AD∥BC,当点P在A、B两点之间运动时,∠ADP=α,∠BCP=β,求∠CPD与α、β之间有何数量关系?请说明理由.
问题解决:
(3)在(2)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD与α、β之间的数量关系 .
(1)数学活动小组经过讨论形成下列推理,请你补全推理依据.
如图2,过点P作PE∥AB,
∵PE∥AB(作图知)
又∵AB∥CD,
∴PE∥C
A.( ) |
∠C+∠CPE=180°.( )
∵∠PAB=130°,∠PCD=120°,
∴∠APE=50°,∠CPE=60°
∴∠APC=∠APE+∠CPE=110°.
问题迁移:
(2)如图3,AD∥BC,当点P在A、B两点之间运动时,∠ADP=α,∠BCP=β,求∠CPD与α、β之间有何数量关系?请说明理由.
问题解决:
(3)在(2)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD与α、β之间的数量关系 .
