如图,已知正方体纸盒的表面积为12cm2;

(1)求正方体的棱长;
(2)剪去盖子后,插入一根长为5cm的细木棒,则细木棒露在外面的最短长度是多少?
(3)一只蚂蚁在纸盒的表面由A爬到B,求蚂蚁行走的最短路线.

(1)求正方体的棱长;
(2)剪去盖子后,插入一根长为5cm的细木棒,则细木棒露在外面的最短长度是多少?
(3)一只蚂蚁在纸盒的表面由A爬到B,求蚂蚁行走的最短路线.
(1)定义:直角三角形两直角边的平方和等于斜边的平方。如:直角三角形的直角边分别为3、4,则斜边的平方=32+42=25.已知:Rt△ABC中,∠C=90°,AC=8,AB=10,直接写出BC2=___.

(2)应用:已知正方形ABCD的边长为4,点P为AD边上的一点,AP=
AD,请利用“两点之间线段最短”这一原理,在线段AC上画出一点M,使MP+MD最小,并直接写出最小值的平方为多少?

(2)应用:已知正方形ABCD的边长为4,点P为AD边上的一点,AP=

如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC,已知AB=5,DE=1,BD=8,设CD=x.

(1)用含x的代数式表示AC+CE的长为: ;
(2)求出AC+CE的最小值。

(1)用含x的代数式表示AC+CE的长为: ;
(2)求出AC+CE的最小值。
如图,圆柱的底面周长为6cm,AC是底面圆的直径,高BC=6cm,点P是母线BC上一点且PC=
BC.一只蚂蚁从A点出发沿着圆柱体的表面爬行到点P的最短距离是( )



A.(4+![]() | B.5cm C.2![]() | C.7cm |
如图①,在4×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点D、A同时出发向右移动,点P的运动速度为每秒2个单位,点Q的运动速度为每秒1个单位,当点P运动到点C时,两个点都停止运动,设运动时间为t(0<t<4).


(1)请在4×8的网格纸图①中画出t为3秒时的线段PQ.并求其长度;
(2)若M是BC的中点,记△PQM的面积为S,请用含有t的代数式来表示S;
(3)当t为多少时,△PQB是以PQ为腰的等腰三角形?


(1)请在4×8的网格纸图①中画出t为3秒时的线段PQ.并求其长度;
(2)若M是BC的中点,记△PQM的面积为S,请用含有t的代数式来表示S;
(3)当t为多少时,△PQB是以PQ为腰的等腰三角形?
如图,圆柱的底面周长为48cm,高为7cm,一只蚂蚁从点B出发沿着圆柱的表面爬行到点A,现有两种路径:①折线B-C-A;②在圆柱侧面上从B到A,较短的路径长是________cm.(π取3).
