如图,在Rt△ABC中,∠A=90º,BC边的垂直平分线交BC于点D,交AB与E,若CE平分∠ACB,EC=5,ED=3,则AB的长是 .


如图,已知△ABC,∠C=90°,AC<BC,D为BC上一点,且到A,B两点距离相等.

(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);
(2)连结AD,若∠B=40°,求∠CAD的度数.

(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);
(2)连结AD,若∠B=40°,求∠CAD的度数.
如图,在笔直的公路L的同侧有A、B两个村庄,已知A、B两村分别到公路的距离AC=3km,BD=4km.现要在公路上建一个汽车站P,使该车站到A、B两村的距离相等,

(1)试用直尺和圆规在图中作出点P;(保留作图痕迹)
(2)若连接AP、BP,测得∠APB=90°,求A村到车站的距离.

(1)试用直尺和圆规在图中作出点P;(保留作图痕迹)
(2)若连接AP、BP,测得∠APB=90°,求A村到车站的距离.
如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于线段BC长度一半的长为半径圆弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=
AB中,一定正确的是()



A.①②③ | B.①②④ | C.①③④ | D.②③④ |
已知直线l及其两侧两点A、B,如图.
(1)在直线l上求一点P,使PA=PB;
(2)在直线l上求一点Q,使l平分∠AQB.
(以上两小题保留作图痕迹,标出必要的字母,不要求写作法)
(1)在直线l上求一点P,使PA=PB;
(2)在直线l上求一点Q,使l平分∠AQB.
(以上两小题保留作图痕迹,标出必要的字母,不要求写作法)

如图,在Rt△ABC中,∠C=90°.
(1)用直尺和圆规作△ABC的BC边上的垂直平分线,与AB交于D点,与BC交于E点(保留作图痕迹,不写作法);
(2)若AC=6,AB=10,连结CD,求DE,CD的长.
(1)用直尺和圆规作△ABC的BC边上的垂直平分线,与AB交于D点,与BC交于E点(保留作图痕迹,不写作法);
(2)若AC=6,AB=10,连结CD,求DE,CD的长.

如图,某地由于居民增多,要在公路边增加一个公共汽车站,A,B是路边两个新建小区,这个公共汽车站建在什么位置,能使两个小区到车站的路程一样长?

已知P是△ABC内一点,连接PA,PB,PC,且PA=PB=PC,则P点一定是( )
A.△ABC的三条中线的交点 |
B.△ABC的三条内角平分线的交点 |
C.△ABC的三条高的交点 |
D.△ABC的三边的中垂线的交点 |