下列各组长度的线段能构成三角形的是( )
A.1.5cm 3.9cm 2.3cm | B.3.5cm 7.1cm 3.6cm |
C.6cm 1cm 6cm | D.4cm 10cm 4cm |
如图,BC⊥AC,CB=8cm,AC=6cm,AB=10cm,那么点B到AC的距离是____cm,点A到BC的距离是____cm,C到AB的距离是____cm.

(4分)如图:在正方形网格中有一个△ABC,按要求进行下列作图(只能借助于网格):
(1)作出△ABC中AB边上的高;
(2)画出先将△ABC向右平移5格,再向上平移3格后的△DEF;

(1)作出△ABC中AB边上的高;
(2)画出先将△ABC向右平移5格,再向上平移3格后的△DEF;

如图,CB∥OA,∠C=∠A=100°,点E,F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.
(1)求∠EOB的度数;
(2)若平行移动AB,那么∠OBC∶∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值.
(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.
(1)求∠EOB的度数;
(2)若平行移动AB,那么∠OBC∶∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值.
(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.

如图1,OP是∠MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形,并将添加的全等条件标注在图上.
请你参考这个作全等三角形的方法,解答下列问题:
(1)如图2,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC和∠BCA的平分线,AD、CE相交于点F,求∠EFA的度数;
(2)在(1)的条件下,请判断FE与FD之间的数量关系,并说明理由;
(3)如图3,在△ABC中,如果∠ACB不是直角,而( 1 )中的其他条件不变,试问在(2)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.
请你参考这个作全等三角形的方法,解答下列问题:
(1)如图2,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC和∠BCA的平分线,AD、CE相交于点F,求∠EFA的度数;
(2)在(1)的条件下,请判断FE与FD之间的数量关系,并说明理由;
(3)如图3,在△ABC中,如果∠ACB不是直角,而( 1 )中的其他条件不变,试问在(2)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.

如图,直角三角形ABC中,∠C=90°,若AC=3 cm,BC=4 cm,AB=5 cm,则点C到AB的最短距离等于_________ cm.
