- 数与式
- 方程与不等式
- 函数
- + 一次函数的图象和性质
- 正比例函数的定义
- 一次函数的定义
- 一次函数的图象
- 一次函数的性质
- 一次函数与方程、不等式
- 一次函数的实际应用
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
在直角坐标系xOy中,矩形ABCD四个顶点的坐标分别为A(1,1),B(3,1),C(3,2),D(1,2)直线l:y=kx+b与直线y=-2x平行,若直线l同时与边AB和CD都相交,则b的取值范围是______.

已知一次函数y=kx+b(k≠0)图象过点(0,2),且与两坐标轴围成的三角形面积为2,则一次函数的解析式为 ( )
A.y= x+2 | B.y= ﹣x+2 | C.y= x+2或y=﹣x+2 | D.y=" -" x+2或y = x-2 |
关于一次函数
的描述,下列说法正确的是( )

A.图象经过第一、二、三象限 |
B.向下平移3个单位长度,可得到![]() |
C.![]() ![]() |
D.图象经过点(-3,0) |
若A(x1,y1)、B(x2,y2)是一次函数y=(a﹣2)x+1图象上的不同的两个点,当x1>x2时,y1<y2,则a的取值范围是( )
A.a<0 | B.a>0 | C.a<2 | D.a>2 |
点P1(x1,y1),P2(x2,y2)是一次函数y=﹣3x+4图象上的两个点,且x1<x2,则以下正确的是( )
A.y1>y2 | B.y1<y2 |
C.y1=y2 | D.无法比较y1和y2的大小 |
在直角坐标系xOy中,直线l过(1,3)和(2,1)两点,且与x轴,y轴分别交于A,B两点.
(1)求直线l的函数关系式;
(2)求△AOB的面积.
(1)求直线l的函数关系式;
(2)求△AOB的面积.

已知y-1与x成正比例,当x=-2时,y=4.
(1)求y与x之间的函数关系式;
(2)当x=2时,y的值为多少?
(3)当y=-5时,x的值为多少?
(1)求y与x之间的函数关系式;
(2)当x=2时,y的值为多少?
(3)当y=-5时,x的值为多少?
(模型建立)(1)如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E,求证:△BEC≌△CDA.
(模型应用)(2)①已知直线l1:y=
x+3与坐标轴交于点A、B,将直线l1绕点A逆时针旋转45o至直线l2,如图2,求直线l2的函数表达式;
②如图3,长方形ABCO,O为坐标原点,点B的坐标为(8,﹣6),点A、C分别在坐标轴上,点P是线段BC上的动点,若△APD是以点D为直角顶点的等腰直角三角形,当点D在直线y=﹣2x+5上时,直接写出点D的坐标,并写出整个运动过程中点D的纵坐标n的取值范围.
(模型应用)(2)①已知直线l1:y=

②如图3,长方形ABCO,O为坐标原点,点B的坐标为(8,﹣6),点A、C分别在坐标轴上,点P是线段BC上的动点,若△APD是以点D为直角顶点的等腰直角三角形,当点D在直线y=﹣2x+5上时,直接写出点D的坐标,并写出整个运动过程中点D的纵坐标n的取值范围.
