- 数与式
- 方程与不等式
- 一元一次方程
- 二元一次方程组
- 一元二次方程
- + 分式方程
- 分式方程的定义
- 分式方程的应用
- 不等式与不等式组
- 无理方程
- 二元二次方程组
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
烟台享有“苹果之乡”的美誉.甲、乙两超市分别用3000元以相同的进价购进质量相同的苹果.甲超市销售方案是:将苹果按大小分类包装销售,其中大苹果400千克,以进价的2倍价格销售,剩下的小苹果以高于进价10%销售.乙超市的销售方案是:不将苹果按大小分类,直接包装销售,价格按甲超市大、小两种苹果售价的平均数定价.若两超市将苹果全部售完,其中甲超市获利2100元(其它成本不计).问:
(1)苹果进价为每千克多少元?
(2)乙超市获利多少元?并比较哪种销售方式更合算.
(1)苹果进价为每千克多少元?
(2)乙超市获利多少元?并比较哪种销售方式更合算.
某厂制作甲、乙两种环保包装盒.已知同样用6m的材料制成甲盒的个数比制成乙盒的个数少2个,且制成一个甲盒比制作一个乙盒需要多用20%的材料.求制作每个甲盒、乙盒各用多少材料?
佳佳果品店在批发市场购买某种水果销售,第一次用1200元购进若干千克,并以每千克8元出售,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了10%,用1452元所购买的数量比第一次多20千克,以每千克9元售出100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价50%售完剩余的水果.
(1)求第一次水果的进价是每千克多少元;
(2)该果品店在这两次销售中,总体上是盈利还是亏损?盈利或亏损了多少元.
(1)求第一次水果的进价是每千克多少元;
(2)该果品店在这两次销售中,总体上是盈利还是亏损?盈利或亏损了多少元.
某商店经销一种纪念品,11月份的营业额为2 000元.为扩大销售,12月份该商店对这种纪念品打九折销售,结果销售量增加20件,营业额增加700元.
(1)求这种纪念品11月份的销售单价;
(2)11月份该商店销售这种商品_______件;
(3)若11月份销售这种纪念品获利800元,求12月份销售这种纪念品获利多少元?
(1)求这种纪念品11月份的销售单价;
(2)11月份该商店销售这种商品_______件;
(3)若11月份销售这种纪念品获利800元,求12月份销售这种纪念品获利多少元?
八(1)班为了配合学校体育文化月活动的开展,同学们从捐助的班费中拿出一部分钱来购买羽毛球拍和跳绳。已知购买一副羽毛球拍比购买一根跳绳多20元。若用200元购买羽毛球拍和用80元购买跳绳,则购买羽毛球拍的副数是购买跳绳根数的一半。
(1)求购买一副羽毛球拍、一根跳绳各需多少元?
(2)双11期间,商店老板给予优惠,购买一副羽毛球拍赠送一根跳绳,如果八(1)班需要的跳绳根数比羽毛球拍的副数的
倍还多
,且该班购买羽毛球拍和跳绳的总费用不超过
元,那么八(1)班最多可购买多少副羽毛球拍?
(1)求购买一副羽毛球拍、一根跳绳各需多少元?
(2)双11期间,商店老板给予优惠,购买一副羽毛球拍赠送一根跳绳,如果八(1)班需要的跳绳根数比羽毛球拍的副数的



甲、乙两人同时从 A地出发,步行 15km 到 B地,甲比乙每小时多走 1km,结果甲比乙早到半小时,两人每小时各走几千米?设甲每小时走 x km,则可列出的方程为( )
A.![]() | B.![]() | C.![]() | D.![]() |