- 数与式
- 方程与不等式
- 一元一次方程
- 二元一次方程组
- 一元二次方程
- + 分式方程
- 分式方程的定义
- 分式方程的应用
- 不等式与不等式组
- 无理方程
- 二元二次方程组
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
为了迎接省一级示范学校的验收,广安二中决定对学校校园内的环校跑道进行改造,需要铺设一条长为4200米的道路,根据招标文件得知甲工程队比乙工程队每天能多铺设20米.甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.
甲、乙工程队每天各能铺设多少米?
施工时,需付给甲队每天施工费3000元,需付给乙队每天施工费2500元,单独承包给甲队或乙队,或者两队一起施工都可以,但为了节约经费,方便全校师生出行,聪明的同学们你认为三种承包方式怎样承包最合理?


列方程解应用题:在“双十二”期间,A,B两个超市开展促销活动,活动方式如下:
A超市:购物金额打9折后,若超过2000元再优惠300元;
B超市:购物金额打8折.
某学校计划购买某品牌的篮球做奖品,该品牌的篮球在A,B两个超市的标价相同,根据商场的活动方式,若一次性付款4200元购买这种篮球,则在B超市购买的数量比在A超市购买的数量多5个.请求出这种篮球的标价.
A超市:购物金额打9折后,若超过2000元再优惠300元;
B超市:购物金额打8折.
某学校计划购买某品牌的篮球做奖品,该品牌的篮球在A,B两个超市的标价相同,根据商场的活动方式,若一次性付款4200元购买这种篮球,则在B超市购买的数量比在A超市购买的数量多5个.请求出这种篮球的标价.
注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路,填写表格,并完成本题解答的全过程.如果你选用其他的解题方案,此时,不必填写表格,只需按照解答题的一般要求,进行解答即可.
某校八年级学生由距博物馆 10km 的学校出发前往参观,一部分同学骑自行车先走,过了20min 后,其余同学乘汽车出发,结果他们同时到达.已知汽车的速度是骑车同学速度的 2 倍,求骑车同学的速度.
设骑车同学的速度为 xkm / h
(Ⅰ)根据题意,利用速度、时间、路程之间的关系,用含有 x 的式子填写下表:
(Ⅱ)列出方程,并求出问题的解.
某校八年级学生由距博物馆 10km 的学校出发前往参观,一部分同学骑自行车先走,过了20min 后,其余同学乘汽车出发,结果他们同时到达.已知汽车的速度是骑车同学速度的 2 倍,求骑车同学的速度.
设骑车同学的速度为 xkm / h
(Ⅰ)根据题意,利用速度、时间、路程之间的关系,用含有 x 的式子填写下表:
| 速度(千米 / 时) | 所用时间(时 ) | 所走的路程(千米) |
骑自行车 | x | | 10 |
乘汽车 | | | 10 |
(Ⅱ)列出方程,并求出问题的解.
甲乙两地相距1440千米,货车和客车都从甲地开往乙地,货车比客车早出发5小时,货车比客车晚到1小时,已知客车与货车速度比为5:4,求这两列车的速度各是多少?