- 数与式
- 方程与不等式
- 一元一次方程
- 二元一次方程组
- 一元二次方程
- + 分式方程
- 分式方程的定义
- 分式方程的应用
- 不等式与不等式组
- 无理方程
- 二元二次方程组
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
某学校学生进行急行军训练,预计行60千米的路程在下午5时到达,后来由于把速度加快20%,结果于下午4时到达,求原计划行军的速度.设原计划行军的速度为xkm/h,则可列方程( )
A.![]() | B.![]() |
C.![]() | D.![]() |
某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共有了18天完成全部任务.设原计划每天加工x套运动服,根据题意可列方程为
A.![]() | B.![]() |
C.![]() | D.![]() |
某广告公司招标了一批灯箱加空工程,需要在规定时间内加工1400个灯箱,该公司按一定速度加工5天后发现,按此速度加工下去会延期十天完成,于是又抽调了一批工人投入灯箱加工,使工作效率提高了50%,结果如期完成工作,按规定时间是多少天?
小明用a小时清点完一批图书的一半,小强加入清点另一半图书的工作,两人合作
小时清点完另一半图书.设小强单独清点完这批图书需要x小时.
(1)若a=3,求小强单独清点完这批图书需要的时间.
(2)请用含a的代数式表示x,并说明a满足什么条件时x的值符合实际意义.

(1)若a=3,求小强单独清点完这批图书需要的时间.
(2)请用含a的代数式表示x,并说明a满足什么条件时x的值符合实际意义.