- 数与式
- 方程与不等式
- 一元二次方程的相关概念
- 解一元二次方程
- + 实际问题与一元二次方程
- 一元二次方程的应用——传播问题
- 一元二次方程的应用——增长率问题
- 一元二次方程的应用——与图形有关的问题
- 一元二次方程的应用——数字问题
- 一元二次方程的应用——营销问题
- 一元二次方程的应用——动态几何问题
- 一元二次方程的应用——工程问题
- 一元二次方程的应用——行程问题
- 一元二次方程的应用——图表信息题
- 一元二次方程的应用——其他问题
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
利客来超市销售某种商品,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低2元,平均每天可多售出4件.
(1)若降价6元,则平均每天销售数量为 件;
(2)当每件商品降价多少元时,该商店每天销售利润为1200元?
(1)若降价6元,则平均每天销售数量为 件;
(2)当每件商品降价多少元时,该商店每天销售利润为1200元?
如图,有一张矩形纸片,长15cm,宽9cm,在它的四角各剪去一个同样的小正方形,然折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是48cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为_____.

我市某家快递公司,今年8月份与10月份完成投递的快递总件数分别为6万件和8.64万件,设该快递公司这两个月投递总件数的月平均增长率为x,则下列方程正确的是( )
A.6(1+x)=8.64 |
B.6(1+2x)=8.64 |
C.6(1+x)2=8.64 |
D.6+6(1+x)+6(1+x)2=8.64 |
在一幅长
,宽
的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整幅挂图的面积是
,设金色纸边的宽为
,那么
满足的方程是( )







A.![]() | B.![]() |
C.![]() | D.![]() |
如图,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为多少米?

由于受猪瘟的影响,今年9月份猪肉的价格两次大幅上涨,瘦肉价格由原来每千克
元,连续两次上涨
后,售价上升到每千克
元,则下列方程中正确的是( )



A.![]() | B.![]() |
C.![]() | D.![]() |
如图,在矩形
中,
分别从
同时出发,分别沿边
移动,当有一个点先到达所在边的另一个端点时,其它各点也随之停止移动.己知移动段时间后,若
,
.当
为何值时,以
为顶点的四边形是平行四边形?









国庆期间,某风景区推出两种旅游观光活动付费方式:若人数不超过20人,人均缴费500元;若人数超过20人,则每增加一位旅客,人均收费降低10元,但是人均收费不低于350元.现在某单位在国庆期间组织一批贡献突出的职工到该景区旅游观光,支付了12000元观光费,请问:该单位一共组织了多少位职工参加旅游观光活动?