- 数与式
- 方程与不等式
- 一元二次方程的相关概念
- 解一元二次方程
- + 实际问题与一元二次方程
- 一元二次方程的应用——传播问题
- 一元二次方程的应用——增长率问题
- 一元二次方程的应用——与图形有关的问题
- 一元二次方程的应用——数字问题
- 一元二次方程的应用——营销问题
- 一元二次方程的应用——动态几何问题
- 一元二次方程的应用——工程问题
- 一元二次方程的应用——行程问题
- 一元二次方程的应用——图表信息题
- 一元二次方程的应用——其他问题
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
某中学课外兴趣活动小组准备围建一个矩形苗圃,其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃垂直于墙的一边长为x米.

(1)若苗圃的面积为72平方米,求x的值;
(2)这个苗圃的面积能否是120平方米?请说明理由.

(1)若苗圃的面积为72平方米,求x的值;
(2)这个苗圃的面积能否是120平方米?请说明理由.
网购已经成为一种时尚,某网络购物平台“双十一”全天交易额逐年增长,2017年交易额为500亿元,2019年交易额为720亿元,求2017年至2019年“双十一”交易额的年平均增长率.
建国70周年阅兵式中,三军女兵方队共352人,其中领队2人,方队中,每排的人数比排数多11,则女兵方队共有____________排,每排有__________人.
如图,某小区计划在一块长为
,宽为
的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为
.若设道路的宽为
,则下面所列方程正确的是( )






A.![]() | B.![]() |
C.![]() | D.![]() |
某市政府高度重视教育工作,财政资金优先保障教育,2017年新校舍建设投入资金8亿元,2019年新校舍建设投入资金11.52亿元。求该市政府从2017年到2019年对校舍建设投入资金的年平均增长率.
为提升红岩连线景区旅游服务功能和景区品质,沙区政府投资修建了白公馆到渣滓洞的人行步道.施工单位在铺设人行步道路面时,计划投入34万元的资金购买售价分别为60元/张和50元/张的A、B两种型号的花岗石石材,且购买A型花岗石的数量不超过B型花岗石数量的2倍.
(1)求该施工单位最多能购买A型花岗石多少张?
(2)在实际购买中,销售商为支持景区建设,将A、B两种型号花岗石石材的售价均打a折(即原价的
)出售,因施工实际需要,A型花岗石的数量在(1)中购买最多的基础上再购买40a张,B型花岗石的数量在(1)中购买最少的基础上再购买20a张,这样购买花岗石石材的总费用恰好比原计划减少了6460元,求a的值.
(1)求该施工单位最多能购买A型花岗石多少张?
(2)在实际购买中,销售商为支持景区建设,将A、B两种型号花岗石石材的售价均打a折(即原价的

某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售有如下关系,若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售一部,所有出售的汽车的进价均降低0.1万元/部.月底厂家根据销售量一次性返利给销售公司,销售量在10部以内,含10部,每部返利0.5万元,销售量在10部以上,每部返利1万元.
① 若该公司当月卖出3部汽车,则每部汽车的进价为 万元;
② 如果汽车的销售价位28万元/部,该公司计划当月盈利12万元,那么要卖出多少部汽车?(盈利=销售利润+返利)
① 若该公司当月卖出3部汽车,则每部汽车的进价为 万元;
② 如果汽车的销售价位28万元/部,该公司计划当月盈利12万元,那么要卖出多少部汽车?(盈利=销售利润+返利)
某超市销售一种饮料,平均每天可售出100箱,每箱利润12元,为了扩大销售,增加利润,超市准备适当降价.据测算,每箱每降价1元,平均每天可多售出20箱.
(1)若每箱降价3元,每天销售该饮料可获利多少元?
(2)若要使每天销售该饮料获利1400元,则每箱应降价多少元?
(3)能否使每天销售该饮料获利达到1500元?若能,请求出每箱应降价多少元;若不能,请说明理由.
(1)若每箱降价3元,每天销售该饮料可获利多少元?
(2)若要使每天销售该饮料获利1400元,则每箱应降价多少元?
(3)能否使每天销售该饮料获利达到1500元?若能,请求出每箱应降价多少元;若不能,请说明理由.