- 数与式
- 方程与不等式
- 一元一次方程
- 二元一次方程组
- + 一元二次方程
- 一元二次方程的相关概念
- 解一元二次方程
- 实际问题与一元二次方程
- 分式方程
- 不等式与不等式组
- 无理方程
- 二元二次方程组
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在△ABC中,∠A=90°,AB=2cm,AC=4cm,动点P从点A出发,沿AB方向以1cm/s的速度向点B运动,动点Q从点B同时出发,沿BA方向以1cm/s的速度向点A运动.当点P到达点B时,P, Q两点同时停止运动.以AP为一边向上作正方形APDE,过点Q作QF∥BC,交AC于点
(1)当
=_____s时,点P与点Q重合;
(2)当
为多少时,点D在QF上;
(3)是否存在某一时刻,使得正方形APDE的面积被直线QF平分?若存在,求出
的值;若不存在,请说明理由.
A.设点P的运动时间为![]() ![]() |

(2)当

(3)是否存在某一时刻,使得正方形APDE的面积被直线QF平分?若存在,求出


生物兴趣小组的学生,将自己手机的标本向本组其他成员各赠送意见,全组共赠送了182件,如果全组有x名同学,则根据题意列出的方程是()
A.x ( x+1)=182 | B.2x(x+1)=182 | C.x(x-1)=182 | D.x(x-1)=182×2 |
如图,在一面靠墙的空地上用长32m的篱笆,围成中间隔有两道篱笆的矩形花圃,墙的最大可用长度为8m,设花圃的宽AB为x(m).

(1)用含x的代数式表示BC的长.
(2)若被两道篱笆间隔的每个小矩形花圃的面积是16m2,求AB的长.

(1)用含x的代数式表示BC的长.
(2)若被两道篱笆间隔的每个小矩形花圃的面积是16m2,求AB的长.
某商品原价169元,经连续两次降价后售价为121元,设平均每次降价的百分率为x,则可列方程为_____________________.
某商场今年1月份销售额为100万元,2月份销售额下降了10%, 该商场马上采取措施,改进经营管理,使月销售额大幅上升,4月份的销售额达到129.6万元,求3, 4月份平均每月销售额增长的百分率.
西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克,为了促销,该经营户决定降价销售,经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克,另外,每天的房租等固定成本共24元.
(1)设销售单价为每千克a元,每天平均获利为y元,请解答下列问题:
①每天平均销售量可以表示为_____;
②每天平均销售额可以表示为_____;
③每天平均获利可以表示为y=______;
(2) 该经营户要想每天盈利200元,应将每千克小型西瓜的售价降多少元?
(1)设销售单价为每千克a元,每天平均获利为y元,请解答下列问题:
①每天平均销售量可以表示为_____;
②每天平均销售额可以表示为_____;
③每天平均获利可以表示为y=______;
(2) 该经营户要想每天盈利200元,应将每千克小型西瓜的售价降多少元?
如图,若把边长为1的正方形ABCD的四个角(阴影部分)剪掉,得四边形A1B1C1D1.试问怎样剪,才能使剩下的图形仍为正方形,且剩下图形的面积为原来正方形面积的
?


如图,用一根12米长的木材做一个中间有一条横档的日字形窗户.设AB=x米.
(1)用含有x的代数式表示线段AC的长.
(2)若使透进窗户的光线达到6平方米,则窗户的长和宽各为多少?
(3)透进窗户的光线能达到9平方米吗?若能,请求出这个窗户的长和宽;若不能,请说明理由.
(1)用含有x的代数式表示线段AC的长.
(2)若使透进窗户的光线达到6平方米,则窗户的长和宽各为多少?
(3)透进窗户的光线能达到9平方米吗?若能,请求出这个窗户的长和宽;若不能,请说明理由.

如图,在Rt△ABC中,∠B=90°,AB=BC=12 cm,点D从点A开始沿边AB以2 cm/s的速度向点B移动,移动过程中始终保持四边形DFCE(点E,F分别在AC,BC上)为平行四边形,则出发________s时,四边形DFCE的面积为20 cm2.
